- понимание особенности работы со средствами информатизации, их влияние на здоровье человека, владение профилактическими мерами при работе с этими средствами;
- соблюдении требований безопасности, гигиены и эргономики в работе с компьютером;
- умение преодолевать негативное воздействие средств информационных технологий на психику человека.

Информация и способы её представления

Выпускник научится:

- использовать термины «информация», «сообщение», «данные», «кодирование», а также понимать разницу между употреблением этих терминов в обыденной речи и в информатике;
- описывать размер двоичных текстов, используя термины «бит», «байт» и производные от них; использовать термины, описывающие скорость передачи данных;
- записывать в двоичной системе целые числа от 0 до 256;
- кодировать и декодировать тексты при известной кодовой таблице;
- использовать основные способы графического представления числовой информации.

Выпускник получит возможность:

- •познакомиться с примерами использования формальных (математических) моделей, понять разницу между математической (формальной) моделью объекта и его натурной («вещественной») моделью, между математической (формальной) моделью объекта/явления и его словесным (литературным) описанием;
- узнать о том, что любые данные можно описать, используя алфавит, содержащий только два символа, например 0 и 1;
- познакомиться с тем, как информация (данные) представляется в современных компьютерах;
- •познакомиться с двоичной системой счисления;
- познакомиться с двоичным кодированием текстов и наиболее употребительными современными кодами.

Основы алгоритмической культуры

Выпускник научится:

- понимать термины «исполнитель», «состояние исполнителя», «система команд»; понимать различие между непосредственным и программным управлением исполнителем;
- строить модели различных устройств и объектов в виде исполнителей, описывать возможные состояния и системы команд этих исполнителей;
- понимать термин «алгоритм»; знать основные свойства алгоритмов (фиксированная система команд, пошаговое выполнение, детерминирован-ность, возможность возникновения отказа при выполнении команды);
- составлять неветвящиеся (линейные) алгоритмы управления исполнителями и записывать их на выбранном алгоритмическом языке (языке программирования);
- использовать логические значения, операции и выражения с ними
- понимать (формально выполнять) алгоритмы, описанные с использованием

конструкций ветвления (условные операторы) и повторения (циклы), вспомогательных алгоритмов, простых и табличных величин;

- создавать алгоритмы для решения несложных задач, используя конструкции ветвления (условные операторы) и повторения (циклы), вспомогательные алгоритмы и простые величины;
- создавать и выполнять программы для решения несложных алгоритмических задач в выбранной среде программирования.

Выпускник получит возможность:

- познакомиться с использованием строк, деревьев, графов и с простейшими операциями с этими структурами;
- создавать программы для решения несложных задач, возникающих в процессе учебы и вне её.

Использование программных систем и сервисов

Выпускник научится:

- базовым навыкам работы с компьютером;
- использовать базовый набор понятий, которые позволяют описывать работу основных типов программных средств и сервисов (файловые системы, текстовые редакторы, электронные таблицы, браузеры, поисковые системы, словари, электронные энциклопедии);
- знаниям, умениям и навыкам, достаточным для работы на базовом уровне с различными программными системами и сервисами указанных типов; умению описывать работу этих систем и сервисов с использованием соответствующей терминологии.

Выпускник получит возможность:

- познакомиться с программными средствами для работы с аудио-визуальными данными и соответствующим понятийным аппаратом;
- научиться создавать текстовые документы, включающие рисунки и другие иллюстративные материалы, презентации и т. п.;
- познакомиться с примерами использования математического моделирования и компьютеров в современных научно-технических исследованиях (биология и медицина, авиация и космонавтика, физика и т. д.).

Работа в информационном пространстве

Выпускник научится:

- базовым навыкам и знаниям, необходимым для использования интернетсервисов при решении учебных и внеучебных задач;
- организации своего личного пространства данных с использованием индивидуальных накопителей данных, интернет сервисов и т. п.; основам соблюдения норм информационной этики и права.

Выпускник получит возможность:

- познакомиться с принципами устройства Интернета и сетевого взаимодействия между компьютерами, методами поиска в Интернете;
- познакомиться с постановкой вопроса о том, насколько достоверна полученная информация, подкреплена ли она доказательствами; познакомиться с возможными подходами к оценке достоверности информации (оценка надёжности источника, сравнение данных из разных источников и в разные моменты времени и т. п.);

- узнать о том, что в сфере информатики и информационно-коммуникационных технологий (ИКТ) существуют международные и национальные стандарты;
- получить представление о тенденциях развития ИКТ.

Данная программа составлена с учётом индивидуальных особенностей обучающихся 10 -11 классов и специфики классного коллектива:

- учетом индивидуальных интеллектуальных различий учащихся в образовательном процессе через сочетания типологически ориентированных форм представления содержания учебных материалов во всех компонентах УМК;
- оптимальным сочетанием вербального (словесно-семантического), образного (визуально-пространственного) и формального (символического) способов изложения учебных материалов без нарушения единства и целостности представления учебной темы;
- учетом разнообразия познавательных стилей учащихся через обеспечение необходимым учебным материалом всех возможных видов учебной деятельности.

Кроме того, соответствие возрастным особенностям учащихся достигалось через развитие операционно-деятельностного компонента учебников, включающих в себя задания, формирующие исследовательские и проектные умения. Так, в частности, осуществляется формирование и развитие умений:

- наблюдать и описывать объекты;
- анализировать данные об объектах (предметах, процессах и явлениях);
- выделять свойства объектов;
- обобщать необходимые данные;
- формулировать проблему;
- выдвигать и проверять гипотезу;
- синтезировать получаемые знания в форме математических и информационных моделей;
- самостоятельно осуществлять планирование и прогнозирование своих практических действий и др.

В работе с этими детьми будет применяться индивидуальный подход как при отборе учебного содержания, адаптируя его к интеллектуальным особенностям детей, так и при выборе форм и методов его освоения, которые должны соответствовать их личностных и индивидуальным особенностям. Чтобы включить учащихся класса в работу на уроке, будут использованы нетрадиционные формы организации их деятельности. Частые смены видов работы также будут способствовать повышению эффективности учебного процесса.

3. Содержание учебного курса 10 -11 класс

І. Информация. Информационные системы и базы данных.

Основные подходы к определению понятия «информация». Виды и свойства информации. Количество информации как мера уменьшения неопределенности знаний. Алфавитный подход к определению количества информации. Содержательный подход к измерению информации. Классификация информационных процессов. Кодирование информации. Языки кодирования.

Формализованные и неформализованные языки. Выбор способа представления информации в соответствии с поставленной задачей.

Системы, образованные взаимодействующими элементами, состояния элементов, обмен информацией между элементами, сигналы. Дискретные и непрерывные сигналы. Носители информации. Поиск и отбор информации. Методы поиска. Критерии отбора. Хранение информации; выбор способа хранения информации. Передача информации. Канал связи и его характеристики. Примеры передачи информации в социальных, биологических и технических системах. Обработка информации. Систематизация информации. Изменение формы представления информации. Преобразование информации на основе формальных правил. Алгоритмизация как необходимое условие автоматизации. преимущества и недостатки автоматизированной обработки данных. Хранение информации. Защита информации. Методы защиты. Особенности запоминания, обработки и передачи информации человеком. Управление системой как информационный процесс. Использование основных методов информатики и средств ИКТ при анализе процессов в обществе, природе и технике. Организация личной информационной среды.

Роль информации и связанных с ней процессов в окружающем мире. Различия в представлении данных, предназначенных для хранения и обработки в автоматизированных компьютерных системах, и данных, предназначенных для восприятия человеком.

Системы. Компоненты системы и их взаимодействие.

Универсальность дискретного представления информации.

II. Информационные процессы. Интернет.

Хранение информации. Передача информации. Модель передачи информации К. Шеннона. Пропускная способность канала и скорость передачи информации. Обработка информации. Виды обработки информации. Алгоритм, свойства алгоритма. алгоритмических Модели машин теории алгоритмов. Автоматическая обработка информации. Свойства алгоритмической машины. Алгоритмическая машина Поста. Информационные процессы в компьютере. Архитектура компьютера. Эволюция поколений ЭВМ. Математические основы информатики. Тексты и кодирование. Равномерные и неравномерные коды. Условие Фано. Системы счисления. Сравнение чисел, записанных в двоичной, восьмеричной и шестнадцатеричной системах счисления. Сложение и вычитание чисел, записанных в этихсистемах счисления.

Информационные сервисы сети Интернет: электронная почта, телеконференции, Всемирная паутина, файловые архивы и т.д. Поисковые информационные Описание объекта для системы. Организация поиска информации. Инструментальные средства создания Web-сайтов. последующего поиска. Средства и технологии обмена информацией с помощью компьютерных сетей (сетевые технологии). Каналы связи и их основные характеристики. Помехи, шумы, искажение передаваемой информации. Избыточность информации как повышения надежности ее передачи. Использование обнаружением и исправлением ошибок. Возможности и преимущества сетевых технологий. Локальные сети. Топологии локальных сетей. Глобальная сеть. Адресация в Интернете. Протоколы обмена. Протокол передачи данных ТСР/ІР. Аппаратные и программные средства организации компьютерных сетей.

III. Программирование обработки информации. Информационное

моделирование.

Понятие алгоритма как формального описания последовательности действий исполнителя при заданных начальных данных. Свойства алгоритмов. Способы записи алгоритмов. Язык программирования. Основные правила процедурных языков программирования (Паскаль): правила представления данных; правила записи основных операторов (ввод, вывод, присваивание, ветвление, цикл) и вызова вспомогательных алгоритмов; правила записи программы. Использование массивов, выбор из них данных, нахождение суммы, минимального и максимального элемента, сортировка. Этапы решения задачи на компьютере: моделирование – разработка алгоритма – кодирование – отладка – тестирование.

Элементы комбинаторики, теории множеств и математической логики

Операции «импликация», «эквивалентность». Примеры законов алгебры логики. Эквивалентные преобразования логических выражений. Построение логического выражения с данной таблицей истинности. Решение простейших логических уравнений.

Нормальные формы: дизъюнктивная и конъюнктивная нормальная форма.

Дискретные объекты. Решение алгоритмических задач, связанных с анализом графов (примеры: построения оптимального пути между вершинами ориентированного ациклического графа; определения количества различных путей между вершинами). Использование графов, деревьев, списков при описании объектов и процессов окружающего мира. Бинарное дерево.

Алгоритмы и элементы программирования

Алгоритмические конструкции

Подпрограммы. Рекурсивные алгоритмы.

Табличные величины (массивы).

Запись алгоритмических конструкций в выбранном языке программирования.

Составление алгоритмов и их программная реализация

Этапы решения задач на компьютере.

Операторы языка программирования, основные конструкции языка программирования. Типы и структуры данных. Кодирование базовых алгоритмических конструкций на выбранном языке программирования.

Интегрированная среда разработки программ на выбранном языке программирования. Интерфейс выбранной среды. Составление алгоритмов и программ в выбранной среде программирования. Приемы отладки программ. Проверка работоспособности программ с использованием трассировочных таблиц.

Разработка и программная реализация алгоритмов решения типовых задач базового уровня из различных предметных областей. *Примеры задач*:

- алгоритмы нахождения наибольшего (или наименьшего) из двух, трех, четырех заданных чисел без использования массивов и циклов, а также сумм (или произведений) элементов конечной числовой последовательности (или массива);
- алгоритмы анализа записей чисел в позиционной системе счисления;
- алгоритмы решения задач методом перебора (поиск НОД данного натурального числа, проверка числа на простоту и т.д.);
- алгоритмы работы с элементами массива с однократным просмотром массива: линейный поиск элемента, вставка и удаление элементов в массиве, перестановка элементов данного массива в обратном порядке,

суммирование элементов массива, проверка соответствия элементов массива некоторому условию, нахождение второго по величине наибольшего (или наименьшего) значения.

Алгоритмы редактирования текстов (замена символа/фрагмента, удаление и вставка символа/фрагмента, поиск вхождения заданного образца).

Постановка задачи сортировки.

Анализ алгоритмов

Определение возможных результатов работы простейших алгоритмов управления исполнителями и вычислительных алгоритмов. Определение исходных данных, при которых алгоритм может дать требуемый результат.

Сложность вычисления: количество выполненных операций, размер используемой памяти; зависимость вычислений от размера исходных данных.

Математическое моделирование

Представление результатов моделирования в виде, удобном для восприятия человеком. Графическое представление данных (схемы, таблицы, графики).

Практическая работа с компьютерной моделью по выбранной теме. Анализ достоверности (правдоподобия) результатов экспериментов. Использование сред имитационного моделирования (виртуальных лабораторий) для проведения компьютерного эксперимента в учебной деятельности.

Использование программных систем и сервисов Компьютер – универсальное устройство обработки данных

Программная и аппаратная организация компьютеров и компьютерных систем. Архитектура современных компьютеров. Персональный компьютер. Многопроцессорные системы. Суперкомпьютеры. Распределенные вычислительные системы и обработка больших данных. Мобильные цифровые устройства и их роль в коммуникациях. Встроенные компьютеры. Микроконтроллеры. Роботизированные производства.

Выбор конфигурации компьютера в зависимости от решаемой задачи. Тенденции развития аппаратного обеспечения компьютеров.

Программное обеспечение (ПО) компьютеров и компьютерных систем. Различные виды ПО и их назначение. Особенности программного обеспечения мобильных устройств.

Организация хранения и обработки данных, в том числе с использованием интернет-сервисов, облачных технологий и мобильных устройств. Прикладные компьютерные программы, используемые в соответствии с типом решаемых задач и по выбранной специализации. Параллельное программирование.

Инсталляция и деинсталляция программных средств, необходимых для решения учебных задач и задач по выбранной специализации. Законодательство Российской Федерации в области программного обеспечения.

Способы и средства обеспечения надежного функционирования средств ИКТ. Применение специализированных программ для обеспечения стабильной работы средств ИКТ.

Безопасность, гигиена, эргономика, ресурсосбережение, технологические требования при эксплуатации компьютерного рабочего места. Проектирование автоматизированного рабочего места в соответствии с целями его использования.

Подготовка текстов и демонстрационных материалов

Средства поиска и автозамены. История изменений. Использование готовых шаблонов и создание собственных. Разработка структуры документа, создание гипертекстового документа. Стандарты библиографических описаний.

Деловая переписка, научная публикация. Реферат и аннотация. *Оформление* списка литературы.

Коллективная работа с документами. Рецензирование текста. Облачные сервисы.

Знакомство с компьютерной версткой текста. Технические средства ввода текста. Программы распознавания текста, введенного с использованием сканера, планшетного ПК или графического планшета. Программы синтеза и распознавания устной речи.

Работа с аудиовизуальными данными

Создание и преобразование аудиовизуальных объектов. Ввод изображений с использованием различных цифровых устройств (цифровых фотоаппаратов и микроскопов, видеокамер, сканеров и т. д.). Обработка изображения и звука с использованием интернет- и мобильных приложений.

Использование мультимедийных онлайн-сервисов для разработки презентаций проектных работ. Работа в группе, технология публикации готового материала в сети.

Электронные (динамические) таблицы

Примеры использования динамических (электронных) таблиц на практике (в том числе – в задачах математического моделирования).

Базы данных

Реляционные (табличные) базы данных. Таблица — представление сведений об однотипных объектах. Поле, запись. Ключевые поля таблицы. Связи между таблицами. Схема данных. Поиск и выбор в базах данных. Сортировка данных.

Создание, ведение и использование баз данных при решении учебных и практических задач.

Автоматизированное проектирование

Представление о системах автоматизированного проектирования. Системы автоматизированного проектирования. Создание чертежей типовых деталей и объектов.

3D-моделирование

Принципы построения и редактирования трехмерных моделей. Сеточные модели. Материалы. Моделирование источников освещения. Камеры. Аддитивные технологии (3D-принтеры).

Системы искусственного интеллекта и машинное обучение

Машинное обучение – решение задач распознавания, классификации и предсказания. Искусственный интеллект.

Информационно-коммуникационные технологии. Работа в информационном пространстве

Компьютерные сети

Принципы построения компьютерных сетей. Сетевые протоколы. Интернет. Адресация в сети Интернет. Система доменных имен. Браузеры.

Аппаратные компоненты компьютерных сетей.

Веб-сайт. Страница. Взаимодействие веб-страницы с сервером. Динамические страницы. Разработка интернет-приложений (сайты).

Сетевое хранение данных. Облачные сервисы.

Деятельность в сети Интернет

Расширенный поиск информации в сети Интернет. Использование языков построения запросов.

Другие виды деятельности в сети Интернет. Геолокационные сервисы реального времени (локация мобильных телефонов, определение загруженности автомагистралей и т.п.); интернет-торговля; бронирование билетов и гостиниц и т.п.

Социальная информатика

Социальные сети – организация коллективного взаимодействия и обмена данными. Сетевой этикет: правила поведения в киберпространстве.

Проблема подлинности полученной информации. *Информационная культура*. *Государственные электронные сервисы и услуги*. Мобильные приложения. Открытые образовательные ресурсы.

IV. Социальная информатика

Информационная цивилизация. Информационные общества. ресурсы Информационная культура. Этические и правовые нормы информационной человека. Информационная безопасность. Средства деятельности защиты информации автоматизированных информационных системах (АИС), компьютерных сетях и компьютерах. Общие проблемы защиты информации и информационной безопасности АИС. Электронная подпись, сертифицированные сайты и документы.

Техногенные и экономические угрозы, связанные с использованием ИКТ. Правовое обеспечение информационной безопасности.

4. Тематическое планирование по дисциплине «Информатика и ИКТ». Тематическое планирование 10 класс.

Тема	Всего
	часов
1. Введение. Структура информатики.	1ч.
ИНФОРМАЦИЯ	11 ч.
2. Информация. Представление информации	3
3. Измерение информации	3
4. Представление чисел в компьютере	2
5. Представление текста, изображения и звука в компьютере	3
Информационные процессы	5 ч.
6. Хранение и передача информации	1
7. Обработка информации и алгоритмы	1
8. Автоматическая обработка информации	1
9. Информационные процессы в компьютере	1
Контрольная работа №1	1 час
ПРОГРАММИРОВАНИЕ	18 ч.
10. Алгоритмы, структуры алгоритмов, структурное	1
программирование	
11. Программирование линейных алгоритмов	2

12. Логические величины и выражения, программирование	2
ветвлений	
13. Программирование циклов	2
14. Подпрограммы	2
15. Работа с массивами	3
16. Работа с символьной информацией	2
17. Комбинированный тип данных	1
Контрольная работа №2	1 час
Всего:	34 часа

Тематическое планирование 11 класс.

Тема	_
1 CMa	Всего
	часов
Информационные системы и базы данных	20 ч.
1. Системный анализ	6
2. Базы данных	14
Интернет.	18 ч.
3. Организация и услуги Интернет	8
Контрольная работа № 1	1 ч.
4. Основы сайтостроения	10
Информационное моделирование	18 ч.
5. Компьютерное информационное моделирование	2
6. Моделирование зависимостей между величинами	4
7. Модели статистического прогнозирования	4
8. Моделирование корреляционных зависимостей	4
9. Модели оптимального планирования	4
Контрольная работа № 2	1 ч.
Социальная информатика	4 ч.
Информационное общество	2
Информационное право и безопасность	2
Практические работы	4 ч.
Всего:	68 часа

2.2.10. Физика

Примерная программа учебного предмета «Физика» направлена на формирование у обучающихся функциональной грамотности и метапредметных умений через выполнение исследовательской и практической деятельности.

В системе естественно-научного образования физика как учебный предмет занимает важное место в формировании научного мировоззрения и ознакомления обучающихся с методами научного познания окружающего мира, а также с физическими основами современного производства и бытового технического окружения человека; в формировании собственной позиции по отношению к физической информациям полученной из разных источников.

Успешность изучения предмета связана с овладением основами учебно-

исследовательской деятельности, применением полученных знаний при решении практических и теоретических задач.

В соответствии с ФГОС СОО образования «Физика» может изучаться на базовом и углубленном уровнях.

Изучение физики на базовом уровне ориентировано на обеспечение общеобразовательной и общекультурной подготовки выпускников.

Содержание базового курса позволяет использовать знания о физических объектах и процессах для обеспечения безопасности при обращении с приборами и техническими устройствами; для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; для принятия решений в повседневной жизни.

Изучение физики на углубленном уровне включает расширение предметных результатов и содержание, ориентированное на подготовку к последующему профессиональному образованию.

Изучение предмета на углубленном уровне позволяет сформировать у обучающихся физическое мышление, умение систематизировать и обобщать полученные знания, самостоятельно применять полученные знания для решения практических и учебно-исследовательских задач; умение анализировать, прогнозировать и оценивать с позиции экологической безопасности последствия бытовой и производственной деятельности человека, связанной с использованием источников энергии.

В основу изучения предмета «Физика» на базовом и углубленном уровнях в части формирования у обучающихся научного мировоззрения, освоения общенаучных методов познания, а также практического применения научных знаний заложены межпредметные связи в области естественных, математических и гуманитарных наук.

Примерная программа составлена на основе модульного принципа построения учебного материала. Количество часов на изучение учебного предмета и классы, в которых предмет может изучаться, относятся к компетенции образовательной организации.

Примерная программа содержит примерный перечень практических и лабораторных работ. При составлении рабочей программы учитель вправе выбрать из перечня работы, которые считает наиболее целесообразными для достижения предметных результатов.

Базовый уровень

Физика и естественно-научный метод познания природы

Физика — фундаментальная наука о природе. Методы научного исследования физических явлений. Моделирование физических явлений и процессов. Физический закон — границы применимости. Физические теории и принцип соответствия. Роль и место физики в формировании современной научной картины мира, в практической деятельности людей. Физика и культура.

Механика

Границы применимости классической механики.

Кинематические характеристики: перемещение, скорость, ускорение.

Основные модели тел и движення.

Взаимодействие тел. Законы Всемирного тяготения, Гука, сухого трения.

Инерциальная система отсчета. Законы механики Ньютона.

Импульс материальной точки и системы. Изменение и сохранение импульса. *Использование законов механики для объяснения движения небесных тел и для развития космических исследований*. Механическая энергия системы тел. Закон сохранения механической энергии. Работа силы.

Равновесие материальной точки и твердого тела. Условия равновесия. Момент силы. Равновесие жидкости и газа. Движение жидкостей и газов.

Механические колебания и волны. Превращения энергии при колебаниях. Энергия волны.

Молекулярная физика и термодинамика

Молекулярно-кинетическая теория (МКТ) строения вещества и ее экспериментальные доказательства. Абсолютная температура как мера средней кинетической энергии теплового движения частиц вещества. Модель идеального газа. Давление газа. Уравнение состояния идеального газа. Уравнение Менделеева–Клапейрона.

Агрегатные состояния вещества. Модель строения жидкостей.

Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии. Первый закон термодинамики. Необратимость тепловых процессов. Принципы действия тепловых машин.

Электродинамика

Электрическое поле. Закон Кулона. Напряженность и потенциал электростатического поля. Проводники, полупроводники и диэлектрики. Конденсатор.

Постоянный электрический ток. Электродвижущая сила. Закон Ома для полной цепи. Электрический ток в проводниках, электролитах, полупроводниках, газах и вакууме. Сверхпроводимость.

Индукция магнитного поля. Действие магнитного поля на проводник с током и движущуюся заряженную частицу. Сила Ампера и сила Лоренца. Магнитные свойства вещества.

Закон электромагнитной индукции. Электромагнитное поле. Переменный ток. Явление самоиндукции. Индуктивность. Энергия электромагнитного поля.

Электромагнитные колебания. Колебательный контур.

Электромагнитные волны. Диапазоны электромагнитных излучений и их практическое применение.

Геометрическая оптика. Волновые свойства света. Основы специальной теории относительности

Инвариантность модуля скорости света в вакууме. Принцип относительности Эйнштейна. Связь массы и энергии свободной частицы. Энергия покоя.

Квантовая физика. Физика атома и атомного ядра

Гипотеза М. Планка. Фотоэлектрический эффект. Фотон. Корпускулярноволновой дуализм. *Соотношение неопределенностей Гейзенберга*.

Планетарная модель атома. Объяснение линейчатого спектра водорода на основе квантовых постулатов Бора.

Состав и строение атомного ядра. Энергия связи атомных ядер. Виды радиоактивных превращений атомных ядер.

Закон радиоактивного распада. Ядерные реакции. Цепная реакция деления ядер.

Элементарные частицы. Фундаментальные взаимодействия.

Строение Вселенной

Современные представления о происхождении и эволюции Солнца и звезд. Классификация звезд. Звезды и источники их энергии.

Галактика. Представление о строении и эволюции Вселенной.

Примерный перечень практических и лабораторных работ (на выбор учителя)

Прямые измерения:

- измерение мгновенной скорости с использованием секундомера или компьютера с датчиками;
 - сравнение масс (по взаимодействию);
 - измерение сил в механике;
 - измерение температуры жидкостными и цифровыми термометрами;
 - оценка сил взаимодействия молекул (методом отрыва капель);
 - измерение термодинамических параметров газа;
 - измерение ЭДС источника тока;
- измерение силы взаимодействия катушки с током и магнита помощью электронных весов;
 - определение периода обращения двойных звезд (печатные материалы).

Косвенные измерения:

- измерение ускорения;
- измерение ускорения свободного падения;
- определение энергии и импульса по тормозному пути;
- измерение удельной теплоты плавления льда;
- измерение напряженности вихревого электрического поля (при наблюдении электромагнитной индукции);
- измерение внутреннего сопротивления источника тока;
- определение показателя преломления среды;
- измерение фокусного расстояния собирающей и рассеивающей линз;
- определение длины световой волны;
- определение импульса и энергии частицы при движении в магнитном поле (по фотографиям).

Наблюдение явлений:

- наблюдение механических явлений в инерциальных и неинерциальных системах отсчета;
 - наблюдение вынужденных колебаний и резонанса;
 - наблюдение диффузии;
 - наблюдение явления электромагнитной индукции;
- наблюдение волновых свойств света: дифракция, интерференция, поляризация;
 - наблюдение спектров;
 - вечерние наблюдения звезд, Луны и планет в телескоп или бинокль.

Исследования:

- исследование равноускоренного движения с использованием электронного секундомера или компьютера с датчиками;
 - исследование движения тела, брошенного горизонтально;

- исследование центрального удара;
- исследование качения цилиндра по наклонной плоскости;
- исследование движения броуновской частицы (по трекам Перрена);
- исследование изопроцессов;
- исследование изохорного процесса и оценка абсолютного нуля;
- исследование остывания воды;
- исследование зависимости напряжения на полюсах источника тока от силы тока в цепи;
- исследование зависимости силы тока через лампочку от напряжения на ней;
 - исследование нагревания воды нагревателем небольшой мощности;
 - исследование явления электромагнитной индукции;
 - исследование зависимости угла преломления от угла падения;
- исследование зависимости расстояния от линзы до изображения от расстояния от линзы до предмета;
 - исследование спектра водорода;
 - исследование движения двойных звезд (по печатным материалам).

Проверка гипотез (в том числе имеются неверные):

- при движении бруска по наклонной плоскости время перемещения на определенное расстояния тем больше, чем больше масса бруска;
- при движении бруска по наклонной плоскости скорость прямо пропорциональна пути;
 - при затухании колебаний амплитуда обратно пропорциональна времени;
- квадрат среднего перемещения броуновской частицы прямо пропорционален времени наблюдения (по трекам Перрена);
 - скорость остывания воды линейно зависит от времени остывания;
- напряжение при последовательном включении лампочки и резистора не равно сумме напряжений на лампочке и резисторе;
 - угол преломления прямо пропорционален углу падения;
 - при плотном сложении двух линз оптические силы складываются;

Конструирование технических устройств:

- конструирование наклонной плоскости с заданным КПД;
- конструирование рычажных весов;
- конструирование наклонной плоскости, по которой брусок движется с заданным ускорением;
 - конструирование электродвигателя;
 - конструирование трансформатора;
 - конструирование модели телескопа или микроскопа.

Физика (базовый уровень).

По учебному плану Школы предмет «Физика» на уровне среднего общего образования (при изучении предмета на базовом уровне) изучается в объёме 140 часов.

Распределение часов, предназначенных на изучение курса физики в 10-11 классах, осуществляется в соответствии с федеральным государственным

образовательным стандартом:

10 класс: 68 часов (по 2 часа в неделю), 11 класс: 68 часов (по 2 часа в неделю).

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ

Личностные результаты:

- в ценностно-ориентационной сфере чувство гордости за российскую физическую науку, гуманизм, положительное отношение к труду, целеустремленность;
- в трудовой сфере готовность к осознанному выбору дальнейшей образовательной траектории;
- в познавательной (когнитивной, интеллектуальной) сфере умение управлять своей познавательной деятельностью.

Метапредметные результаты:

- использование умений и навыков различных видов познавательной деятельности, применение основных методов познания (системно-информационный анализ, моделирование и т.д.) для изучения различных сторон окружающей действительности;
- использование основных интеллектуальных операций: формулирование гипотез, анализ и синтез, сравнение, обобщение, систематизация, выявление причинно-следственных связей, поиск аналогов;
- умение генерировать идеи и определять средства, необходимые для их реализации;
- умение определять цели и задачи деятельности, выбирать средства реализации целей и применять их на практике;
- использование различных источников для получения физической информации, понимание зависимости содержания и формы представления информации от целей коммуникации и адресата.

Предметные результаты:

В результате изучения учебного предмета «Физика» на уровне среднего общего образования:

Выпускник на базовом уровне научится:

- демонстрировать на примерах роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологий, в практической деятельности людей;
- демонстрировать на примерах взаимосвязь между физикой и другими естественными науками;
- устанавливать взаимосвязь естественно-научных явлений и применять основные физические модели для их описания и объяснения;
- использовать информацию физического содержания при решении учебных, практических, проектных и исследовательских задач, интегрируя информацию из различных источников и критически ее оценивая;
- различать и уметь использовать в учебно-исследовательской деятельности методы научного познания (наблюдение, описание, измерение, эксперимент,

выдвижение гипотезы, моделирование и др.) и формы научного познания (факты, законы, теории), демонстрируя на примерах их роль и место в научном познании;

- проводить прямые и косвенные изменения физических величин, выбирая измерительные приборы с учетом необходимой точности измерений, планировать ход измерений, получать значение измеряемой величины и оценивать относительную погрешность по заданным формулам;
- проводить исследования зависимостей между физическими величинами: проводить измерения и определять на основе исследования значение параметров, характеризующих данную зависимость между величинами, и делать вывод с учетом погрешности измерений;
- использовать для описания характера протекания физических процессов физические величины и демонстрировать взаимосвязь между ними;
- использовать для описания характера протекания физических процессов физические законы с учетом границ их применимости;
- решать качественные задачи (в том числе и межпредметного характера): используя модели, физические величины и законы, выстраивать логически верную цепочку объяснения (доказательства) предложенного в задаче процесса(явления);
- решать расчетные задачи с явно заданной физической моделью: на основе анализа условия задачи выделять физическую модель, находить физические величины и законы, необходимые и достаточные для ее решения, проводить расчеты и проверять полученный результат;
- учитывать границы применения изученных физических моделей при решении физических и межпредметных задач;
- использовать информацию и применять знания о принципах работы и основных характеристиках изученных машин, приборов и других технических устройств для решения практических, учебно-исследовательских и проектных задач;
- использовать знания о физических объектах и процессах в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде, для принятия решений в повседневной жизни.

Выпускник на базовом уровне получит возможность научиться:

- понимать и объяснять целостность физической теории, различать границы ее применимости и место в ряду других физических теорий;
- владеть приемами построения теоретических доказательств, а также прогнозирования особенностейпротекания физических явлений ипроцессовнаю снове полученных теоретических выводов и доказательств;
- характеризовать системную связь между основополагающими научными понятиями: пространство, время, материя (вещество, поле), движение, сила, энергия;
- выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов;
 - самостоятельно планировать и проводить физические эксперименты;
- характеризовать глобальные проблемы, стоящие перед человечеством: энергетические, сырьевые, экологические, роль физики в решении этих проблем;

- решать практико-ориентированные качественные и расчетные физические задачи с выбором физической модели, используя несколько физических законов или формул, связывающих известные физические величины, в контексте межпредметных связей;
- объяснять принципы работы и характеристики изученных машин, приборов и технических устройств;
- объяснять условия применения физических моделей при решении физических задач, находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний, так и при помощи методов оценки.

СОДЕРЖАНИЕ

В системе естественно-научного образования физика как учебный предмет занимает важное место в формировании научного мировоззрения и ознакомления обучающихся с методами научного познания окружающего мира, а также с физическими основами современного производства и бытового технического окружения человека; в формировании собственной позиции по отношению к физической информации, полученной из разных источников.

Успешность изучения предмета связана с овладением основами учебноисследовательской деятельности, применением полученных знаний при решении практических и теоретических задач.

В соответствии с $\Phi \Gamma O C$ COO образования физика изучается на базовом и углубленном уровнях.

Изучение физики на базовом уровне ориентировано на обеспечение общеобразовательной и общекультурной подготовки выпускников.

Содержание базового курса позволяет использовать знания о физических объектах и процессах для обеспечения безопасности при обращении с приборами и техническими устройствами; для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; для принятия решений в повседневной жизни.

Изучение предмета на углубленном уровне позволяет сформировать у обучающихся физическое мышление, умение систематизировать и обобщать полученные знания, самостоятельно применять полученные знания для решения практических и учебно- исследовательских задач; умение анализировать, прогнозировать и оценивать с позиции экологической безопасности последствия бытовой и производственной деятельности человека, связанной с использованием источников энергии.

В основу изучения предмета «Физика» на базовом и углубленном уровнях в части формирования у обучающихся научного мировоззрения, освоения общенаучных методов познания, а также практического применения научных знаний заложены межпредметные связи в области естественных, математических и гуманитарных наук.

Углублённый уровень изучения предмета предполагает формирование предметных компетентностей базового уровня в качестве основы для углубления. Его отличают: большая теоретическая глубина материала, усложнённость решаемых задач, выполнение исследовательских и проектных работ, более высокий уровень требований к планируемым результатам обучения. Таким образом, обучающиеся на углублённом уровне сначала

изучают материалы на базовом уровне, после чего переходят к изучению дополнительных материалов. В классах с базовым уровнем изучения предмета предусмотрены фронтальные лабораторные работы. В классах с углублённым изучением выполнение лабораторных работ предусмотрено в двух вариантах: фронтальные лабораторные работы и лабораторные практикумы. Темы работ лабораторного практикума учитель выбирает в зависимости от уровня подготовки обучающихся и наличия оборудования в кабинете физики.

Раздел	Базовый уровень
Физика и естественно-	Физика – фундаментальная наука о природе. Методы научного исследования физических явлений.
научный метод познания природы	Моделирование физических явлений и процессов. Физический закон – границы применимости. Физические теории и принцип соответствия. Роль и место физики в формировании современной научной картины мира, в практической деятельности людей. Физика и культура.
Механика	Границы применимости классической механики. Важнейшие кинематические характеристики — перемещение, скорость, ускорение. Основные модели тел и движений. Взаимодействие тел. Законы Всемирного тяготения, Гука, сухого трения. Инерциальная система отсчета. Законы механики Ньютона. Импульс материальной точки и системы. Изменение и сохранение импульса. Использование законов механики для объяснения движения небесных тел и для развития космических исследований. Механическая энергия системы тел. Закон сохранения механической энергии. Работа силы. Равновесие материальной точки и твердого тела. Условия равновесия. Момент силы. Равновесие жидкости и газа. Движение жидкостей и газов.
	Механические колебания и волны. Превращения энергии при колебаниях. Энергия волны.
Молекулярная физика и термодинамика	Молекулярно-кинетическая теория (МКТ) строения вещества и ее экспериментальные доказательства. Абсолютная температура как мера средней кинетической
•	энергии теплового движения частиц вещества. Модель идеального газа. Давление газа. Уравнение состояния идеального газа.
	Уравнение Менделеева— Клапейрона. Агрегатные состояния вещества. Модель строения жидкостей.
	Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии. Первый закон термодинамики. Необратимость тепловых процессов. Принципы действия тепловых машин.

Электродинамика	Электрическое поле.			
p	Закон Кулона. Напряженность и потенциал электростатического поля. Проводники, полупроводники и			
	диэлектрики.			
	Конденсатор.			
	Постоянный электрический ток. Электродвижущая сила.			
	Закон Ома для полной цепи. Электрический ток в			
	проводниках, электролитах, полупроводниках, газах и			
	вакууме. Сверхпроводимость.			
	Индукция магнитного поля. Действие магнитного поля на			
	проводник с током и движущуюся заряженную частицу.			
	Сила Ампера и сила Лоренца. Магнитные свойства			
	вещества.			
	Закон электромагнитной индукции.			
	Электромагнитное поле. Переменный ток. Явление			
	самоиндукции. Индуктивность. Энергия			
	электромагнитного поля. Электромагнитные колебания.			
	Колебательный контур.			
	Электромагнитные волны. Диапазоны электромагнитных			
	излучений и их практическое применение.			
	Геометрическая оптика. Волновые свойства света.			
Основы	Инвариантность модуля скорости света в вакууме.			
специальной	Принцип относительности Эйнштейна.			
теории	Связь массы и энергии свободной частицы. Энергия покоя.			
ОТНОСИТЕЛЬНОСТИ	Г М. П Фанализмин 211 Фанал			
Квантовая	Гипотеза М. Планка. Фотоэлектрический эффект. Фотон.			
физика. Физика	Корпускулярно-волновой дуализм.			
атома и атомного				
ядра	Соотношение неопределенностей Гейзенберга.			
	Планетарная модель атома. Объяснение линейчатого			
	спектра водорода на основе квантовых постулатов Бора.			
	взаимодействия.			
	Состав и строение атомного ядра. Энергия связи атомных ядер. Виды радиоактивных превращений атомных ядер. Закон радиоактивного распада. Ядерные реакции. Цепная реакция деления ядер. Элементарные частицы. Фундаментальные			

Примерный перечень лабораторных работ

- Л/Р «Изучение движения тела, брошенного под углом к горизонту»
- Л/Р «Изучение движения тела по окружности под действием силы тяжести и упругости»
- Л/Р «Измерение коэффициента трения с помощью наклонной плоскости»
- Л/Р «Баллистический маятник»

- Л/Р «Проверка уравнения состояния газа»
- Л/Р «Экспериментальное подтверждение первого закона термодинамики»
- Л/Р «Определение коэффициента поверхностного натяжения жидкости»
- Л/Р «Измерение удельной теплоты плавления льда»
- Л/Р «Измерение электрического заряда»
- Л/Р «Расчет и измерение емкости плоского конденсатора»
- Л/Р «Расчет и измерение сопротивлений резисторов при их последовательном соединении»
- Л/Р «Расчет и измерение сопротивлений резисторов при их параллельном соединении»
- Л/Р «Измерение ЭДС и внутреннего сопротивления источника электрического тока»
- Л/Р «Измерение электрического сопротивления проводников»
- Л/Р «Наблюдение действий магнитного поля»
- Л/Р «Изучение явления электромагнитной индукции»
- Л/Р «Измерение ускорения свободного падения»
- Л/Р «Измерение показателя преломления»
- Л/Р «Измерение длины световой волны»
- Л/Р «Изучение сплошного и линейчатого спектров»

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

Базовый уровень.

№ п/п	Тема	Количество часов	В том числе	
11/11			Контрольные работы	Лабораторные работы
	10 класс			
1	Введение. Методы	1	-	-
	научного познания			
	мира			
2	Механика	21	1	2
3	Основы МКТ и	22	1	1
	Термодинамики			
4	Электродинамика	20	1	1
	Повторение	4	1	-
	ИТОГО	68 часов	4	4
	11 класс			
1	Основы	12	1	2
	электродинамики			
	(продолжение 10			
	класса)			

№ п/п	Тема	Количество часов	В том числе	
11/11		псов	Контрольные работы	Лабораторные работы
2	Электричество.	24	1	2
	Законы постоянного			
	тока			
3	Магнитные явления.	10	1	-
4	Законы	10	1	•
	геометрической			
	оптики			
5	Квантовая физика,	8	1	-
	физика атома и			
	атомного ядра			
	Повторение	4	1	-
	ОТОТИ	68 часов	6	6

2.2.11. Астрономия

Астрономия в российской школе всегда рассматривалась который, завершая физико-математическое образование выпускников средней школы, знакомит их с современными представлениями о строении и эволюции Вселенной способствует формированию научного мировоззрения. В настоящее время важнейшими задачами астрономии являются формирование представлений о единстве физических законов, действующих на Земле и в безграничной Вселенной, о непрерывно происходящей эволюции нашей планеты, всех космических тел и их систем, а также самой Вселенной. Астрономия по выбору и реализуется за счет школьного или является предметом регионального компонента. Изучение курса рассчитано на 35 часов. Важную роль в освоении курса играют проводимые во внеурочное время собственные Специфика этих наблюдений наблюдения учащихся. планирования обстоятельствами. определяется двумя Во-первых, они (3a исключением наблюдений Солнца) должны проводиться в вечернее или ночное время. Вовторых, объекты, природа которых изучается на том или ином уроке, могут быть в это время недоступны для наблюдений. При планировании наблюдений этих объектов, в особенности планет, необходимо учитывать условия их видимости.

Содержание программы по астрономии.

Астрономия, ее значение и связь с другими науками

Астрономия, ее связь с другими науками. Структура и масштабы Вселенной. Особенности астрономических методов исследования. Телескопы и радиотелескопы. Всеволновая астрономия.

Практические основы астрономии

Звезды и созвездия. Звездные карты, глобусы и атласы. Видимое движение звезд на различных географических широтах. Кульминация светил. Видимое годичное движение Солнца. Эклиптика. Движение и фазы Луны. Затмения Солнца и Луны. Время и календарь.

Строение Солнечной системы

Развитие представлений о строении мира. Геоцентрическая система мира. Становление гелиоцентрической системы мира. Конфигурации планет и условия их видимости. Синодический и сидерический (звездный) периоды обращения планет. Законы Кеплера. Определение расстояний и размеров тел в Солнечной системе. Горизонтальный параллакс. Движение небесных тел под действием сил тяготения. Определение массы небесных тел. Движение искусственных спутников Земли и космических аппаратов в Солнечной системе.

Природа тел Солнечной системы

Солнечная система как комплекс тел, имеющих общее происхождение. Земля и Луна — двойная планета. Исследования Луны космическими аппаратами. Пилотируемые полеты на Луну. Планеты земной группы. Природа Меркурия, Венеры и Марса. Планеты-гиганты, их спутники и кольца. Малые тела Солнечной системы: астероиды, планеты-карлики, кометы, метеороиды, метеоры, болиды и метеориты.

Солнце и звезды

Излучение и температура Солнца. Состав и строение Солнца. Источник его энергии. Атмосфера Солнца. Солнечная активность и ее влияние на Землю. Звезды — далекие солнца. Годичный параллакс и расстояния до звезд. Светимость, спектр, цвет и температура различных классов звезд. Диаграмма «спектр — светимость». Массы и размеры звезд. Модели звезд. Переменные и нестационарные звезды. Цефеиды — маяки Вселенной. Эволюция звезд различной массы.

Строение и эволюция Вселенной

Наша Галактика. Ее размеры и структура. Два типа населения Галактики. Межзвездная среда: газ и пыль. Спиральные рукава. Ядро Галактики. Области звездообразования. Вращение Галактики. Проблема «скрытой» массы. Разнообразие мира галактик. Квазары. Скопления и сверхскопления галактик.

Основы современной космологии. «Красное смещение» и закон Хаббла. Нестационарная Вселенная А. А. Фридмана. Большой взрыв. Реликтовое излучение. Ускорение расширения Вселенной. «Темная энергия» и антитяготение.

Жизнь и разум во Вселенной

Проблема существования жизни вне Земли. Условия, необходимые для развития жизни. Поиски жизни на планетах Солнечной системы. Сложные органические соединения в космосе. Современные возможности космонавтики и радио- астрономии для связи с другими цивилизациями. Планетные системы у других звезд. Человечество заявляет о своем существовании.

Астрономия (базовый уровень).

По учебному плану Школы предмет «Астрономия» на уровне среднего общего образования (при изучении предмета на базовом уровне) изучается в объёме 34 часов.

Распределение часов, предназначенных на изучение астрономии в 11 классе, осуществляется в соответствии с федеральным государственным образовательным

стандартом:

11 класс: 34 часа (1 час в неделю),

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ

Личностные результаты:

- 1) сформированность мировоззрения, соответствующего современному уровню развития науки и общественной практики;
- 2) сформированность основ саморазвития и самовоспитания; готовность и способность к самостоятельной, творческой и ответственной деятельности (образовательной, коммуникативной и др.);
- 3) сформированность навыков продуктивного сотрудничества со сверстниками, детьми старшего и младшего возраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, учебно-инновационной и других видах деятельности;
- 4) готовность и способность к образованию и самообразованию на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;

Метапредметные результаты:

- 1) умение самостоятельно определять цели и составлять планы, осознавая приоритетные и
- второстепенные задачи;
- 2) умение продуктивно общаться и взаимодействовать с коллегами по совместной деятельности, учитывать позиции другого, эффективно разрешать конфликты;
- 3) владение навыками познавательной деятельности, навыками разрешения проблем; способность и готовность к самостоятельному поиску методов решения практических задач, применению различных методов познания для изучения различных сторон окружающей действительности;
- 4) готовность и способность к самостоятельной и ответственной информационной деятельности, включая умение ориентироваться в различных источниках информации, критически оценивать и интерпретировать информацию, получаемую из различных источников;
- 5) умение самостоятельно оценивать и принимать решения, определяющие стратегию поведения, с учётом гражданских и нравственных ценностей;
- 6) владение языковыми средствами: умение ясно, логично и точно излагать свою точку зрения, использовать языковые средства, адекватные обсуждаемой проблеме, включая составление текста и презентации материалов с использованием информационных и коммуникационных технологий, участвовать в дискуссии;
- 7) владение навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований, границ своего знания и незнания, новых познавательных задач и средств их достижения.

Универсальные учебные действия:

Регулятивные УУД:

- 1. Целеполагание как постановка учебной задачи на основе соотнесения того, что уже известно и усвоено и того, что еще неизвестно по данной теме.
- 2. Составление плана и последовательности действий в решении задач.
- 3. Коррекция внесение необходимых дополнений и корректив в план решения задач и способ действия в случае расхождения эталона, реального действия и его продукта.
- 4. Оценка выделение и осознание обучающимися того, что уже усвоено и что еще подлежит усвоению, осознание качества и уровня усвоения темы.
- 5. Волевая само регуляция как способность к мобилизации сил и энергии; способность к волевому усилию, к выбору ситуации мотивационного конфликта и к преодолению препятствий.

Познавательные УУД:

- 1. Самостоятельное выделение и формулирование познавательной цели.
- 2. Поиск и выделение необходимой информации.
- 3. Выбор наиболее эффективных способов решения задач.
- 4. Смысловое чтение как осмысление цели чтения.
- 5. Умение адекватно, осознано и произвольно строить речевое высказывание в устной и письменной речи.
- 6. Способность и умение обучающихся производить простые логические действия (анализ, синтез, сравнение, обобщение).

Коммуникативные УУД:

- 1. Сознательная ориентация обучающихся на позиции других людей, умение слушать и вступать в диалог, участвовать в коллективном обсуждении проблем.
- 2. Умение интегрироваться в группу сверстников при работе в группах.
- 3. Умение строить продуктивное взаимодействие и сотрудничество со сверстниками и взрослыми при изучении темы.
- 4. Умение использовать адекватные языковые средства.
- 5. Умение ясно, логично и точно излагать свою точку зрения.

Предметные результаты:

Выпускник на базовом уровне научится:

Предметные результаты изучения темы «Практические основы астрономии» позволяют:

- воспроизводить определения терминов и понятий (созвездие, высота и кульминация звезд и Солнца, эклиптика, местное, поясное, летнее и зимнее время);
- объяснять необходимость введения високосных лет и нового календарного стиля;
- объяснять наблюдаемые невооруженным глазом движения звезд и Солнца на различных географических широтах, движение и фазы Луны, причины затмений Луны и Солнца;
- применять звездную карту для поиска на небе определенных созвездий и звезд. Предметные результаты изучения темы «Строение Солнечной системы» позволяют:
- воспроизводить исторические сведения о становлении и развитии гелиоцентрической системы мира;

- воспроизводить определения терминов и понятий (конфигурация планет, синодический и сидерический периоды обращения планет, горизонтальный параллакс, угловые размеры объекта, астрономическая единица);
- вычислять расстояние до планет по горизонтальному параллаксу, а их размеры по угловым размерам и расстоянию;
- формулировать законы Кеплера, определять массы планет на основе третьего (уточненного) закона Кеплера;
- описывать особенности движения тел Солнечной системы под действием сил тяготения по орбитам с различным эксцентриситетом;
- объяснять причины возникновения приливов на Земле и возмущений в движении тел Солнечной системы;
- характеризовать особенности движения и маневров космических аппаратов для исследования тел Солнечной системы.

Предметные результаты изучения темы «Природа тел Солнечной системы» позволяют:

- формулировать и обосновывать основные положения современной гипотезы о формировании всех тел Солнечной системы из единого газопылевого облака;
- определять и различать понятия (Солнечная система, планета, ее спутники, планеты земной группы, планеты-гиганты, кольца планет, малые тела, астероиды, планеты-карлики, кометы, метеоры, болиды, метеориты);
- описывать природу Луны и объяснять причины ее отличия от Земли;
- перечислять существенные различия природы двух групп планет и объяснять причины их возникновения;
- проводить сравнение Меркурия, Венеры и Марса с Землей по рельефу поверхности и составу атмосфер, указывать следы эволюционных изменений природы этих планет;
- объяснять механизм парникового эффекта и его значение для формирования и сохранения уникальной природы Земли;
- описывать характерные особенности природы планет-гигантов, их спутников и колец;
- характеризовать природу малых тел Солнечной системы и объяснять причины их значительных различий;
- описывать явления метеора и болида, объяснять процессы, которые происходят при движении тел, влетающих в атмосферу планеты с космической скоростью;
- описывать последствия падения на Землю крупных метеоритов;
- объяснять сущность астероидно-кометной опасности, возможности и способы ее предотвращения.

Предметные результаты освоения темы «Солнце и звезды» позволяют:

- определять и различать понятия (звезда, модель звезды, светимость, парсек, световой год);
- характеризовать физическое состояние вещества Солнца и звезд и источники их энергии;
- описывать внутреннее строение Солнца и способы передачи энергии из центра к поверхности;
- объяснять механизм возникновения на Солнце грануляции и пятен;

- описывать наблюдаемые проявления солнечной активности и их влияние на Землю;
- вычислять расстояние до звезд по годичному параллаксу;
- называть основные отличительные особенности звезд различных последовательностей на диаграмме «спектр светимость»;
- сравнивать модели различных типов звезд с моделью Солнца;
- объяснять причины изменения светимости переменных звезд;
- описывать механизм вспышек новых и сверхновых;
- оценивать время существования звезд в зависимости от их массы;
- описывать этапы формирования и эволюции звезды;
- характеризовать физические особенности объектов, возникающих на конечной стадии эволюции звезд: белых карликов, нейтронных звезд и черных дыр.

Предметные результаты изучения темы «Строение и эволюция Вселенной» позволяют:

- объяснять смысл понятий (космология, Вселенная, модель Вселенной, Большой взрыв, реликтовое излучение);
- характеризовать основные параметры Галактики (размеры, состав, структура и кинематика);
- определять расстояние до звездных скоплений и галактик по цефеидам на основе зависимости «период светимость»;
- распознавать типы галактик (спиральные, эллиптические, неправильные);
- сравнивать выводы А. Эйнштейна и А. А. Фридмана относительно модели Вселенной;
- обосновывать справедливость модели Фридмана результатами наблюдений «красного смещения» в спектрах галактик;
- формулировать закон Хаббла;
- определять расстояние до галактик на основе закона Хаббла; по светимости сверхновых;
- оценивать возраст Вселенной на основе постоянной Хаббла;
- интерпретировать обнаружение реликтового излучения как свидетельство в пользу гипотезы горячей Вселенной;
- классифицировать основные периоды эволюции Вселенной с момента начала ее расширения Большого взрыва;
- интерпретировать современные данные об ускорении расширения Вселенной как результата действия антитяготения «темной энергии» вида материи, природа которой еще неизвестна.

Предметные результаты «Жизнь и разум во Вселенной» позволяют:

— систематизировать знания о методах исследования и современном состоянии проблемы существования жизни во Вселенной. Обеспечить достижение планируемых результатов освоения основной образовательной программы, создать основу для самостоятельного успешного усвоения обучающимися новых знаний, умений, видов и способов деятельности должен системно-деятельностный подход. В соответствии с этим подходом именно активность обучающихся признается основой достижения развивающих целей образования — знания не передаются в готовом виде, а добываются учащимися в процессе познавательной деятельности.

Одним из путей повышения мотивации и эффективности учебной деятельности в средней школе является включение учащихся в учебно-исследовательскую и проектную деятельность, которая имеет следующие особенности:

- 1) цели и задачи этих видов деятельности учащихся определяются как их личностными мотивами, так и социальными. Это означает, что такая деятельность должна быть направлена не только на повышение компетентности подростков в предметной области определенных учебных дисциплин, не только на развитие их способностей, но и на создание продукта, имеющего значимость для других;
- 2) учебно-исследовательская и проектная деятельность должна быть организована таким образом, чтобы учащиеся смогли реализовать свои потребности в общении со значимыми, референтными группами одноклассников, учителей и т. д. Строя различного рода отношения в ходе целенаправленной, поисковой, творческой и продуктивной деятельности, подростки овладевают нормами взаимоотношений с разными людьми, умениями переходить от одного вида общения к другому, приобретают навыки индивидуальной самостоятельной работы и сотрудничества в коллективе;
- 3) организация учебно-исследовательских и проектных работ школьников обеспечивает сочетание различных видов познавательной деятельности.
- В этих видах деятельности могут быть востребованы практически любые способности подростков, реализованы личные пристрастия к тому или иному виду деятельности.

В результате учебно-исследовательской и проектной деятельности выпускник получит представление:

- о философских и методологических основаниях научной деятельности и научных методах, применяемых в исследовательской и проектной деятельности;
- о таких понятиях, как концепция, научная гипотеза, метод, эксперимент, надежность гипотезы, модель, метод сбора и метод анализа данных;
- о том, чем отличаются исследования в гуманитарных областях от исследований в естественных науках;
- об истории науки;
- о новейших разработках в области науки и технологий;
- о правилах и законах, регулирующих отношения в научной, изобретательской и исследовательских областях деятельности (патентное право, защита авторского права и т. п.);
- о деятельности организаций, сообществ и структур, заинтересованных в результатах исследований и предоставляющих ресурсы для проведения исследований и реализации проектов (фонды, государственные структуры, краудфандинговые структуры и т. п.).

Выпускник сможет научиться:

- решать задачи, находящиеся на стыке нескольких учебных дисциплин (межпредметные задачи);
- использовать основной алгоритм исследования при решении своих учебнпознавательных задач;

- использовать основные принципы проектной деятельности при решении своих учебно-познавательных задач и задач, возникающих в культурной и социальной жизни;
- использовать элементы математического моделирования при решении исследовательских задач;
- использовать элементы математического анализа для интерпретации результатов, полученных в ходе учебно-исследовательской работы.

С точки зрения формирования универсальных учебных действий в ходе освоения принципов учебно-исследовательской и проектной деятельности выпускник научится:

- формулировать научную гипотезу, ставить цель в рамках исследования и проектирования, исходя из культурной нормы и сообразуясь с представлениями об общем благе;
- восстанавливать контексты и пути развития того или иного вида научной деятельности, определяя место своего исследования или проекта в общем культурном пространстве;
- отслеживать и принимать во внимание тренды и тенденции развития различных видов деятельности, в том числе научных, учитывать их при постановке собственных целей;
- оценивать ресурсы, в том числе и нематериальные, такие как время, необходимые для достижения поставленной цели;
- находить различные источники материальных и нематериальных ресурсов, предоставляющих средства для проведения исследований и реализации проектов в различных областях деятельности человека;
- вступать в коммуникацию с держателями различных типов ресурсов, точно и объективно презентуя свой проект или возможные результаты исследования, с целью обеспечения продуктивного взаимовыгодного сотрудничества;
- самостоятельно и совместно с другими авторами разрабатывать систему параметров и критериев оценки эффективности и продуктивности реализации проекта или исследования на каждом этапе реализации и по завершении работы;
- адекватно оценивать риски реализации проекта и проведения исследования и предусматривать пути минимизации этих рисков;
- адекватно оценивать последствия реализации своего проекта (изменения, которые он повлечет в жизни других людей, сообществ);
- адекватно оценивать дальнейшее развитие своего проекта или исследования, видеть возможные варианты применения результатов.

Содержание курса

Введение в астрономию

Строение и масштабы Вселенной, и современные наблюдения

Какие тела заполняют Вселенную. Каковы их характерные размеры и расстояния между ними. Какие физические условия встречаются в них. Вселенная расширяется. Где и как работают самые крупные оптические телескопы. Как астрономы исследуют гамма излучение Вселенной. Что увидели гравитационно волновые и нейтринные телескопы.

Астрометрия

Звёздное небо и видимое движение небесных светил

Какие звёзды входят в созвездия Ориона и Лебедя. Солнце движется по эклиптике.

Планеты совершают петлеобразное движение.

Небесные координаты

Что такое небесный экватор и небесный меридиан. Как строят экваториальную систему небесных координат. Как строят горизонтальную систему небесных координат.

Видимое движение планет и Солнца

Петлеобразное движение планет, попятное и прямое движение планет. Эклиптика, зодиакальные созвездия. Неравномерное движение Солнца по эклиптике.

Движение Луны и затмения

Фазы Луны и синодический месяц, условия наступления солнечного и лунные затмения.

Почему происходят солнечные затмения. Сарос и предсказания затмений

Время и календарь

Звёздное и солнечное время, звёздный и тропический год.

Устройство лунного и солнечного календаря, проблемы их согласования Юлианский и григорианский календари.

Небесная механика

Гелиоцентрическая система мира

Представляли о строении Солнечной системы в античные времена и в средневековье. Гелиоцентрическая система мира, доказательство вращение Земли вокруг Солнца. Параллакс звезд и определение расстояние до них, парсек.

Законы Кеплера движения планет

Открытие И.Кеплером законов движения планет. Открытие закона Всемирного тяготения и обобщённые законы Кеплера. Определение масс небесных тел.

Космические скорости

Расчёты первой и второй космической скорости и их физически смысл. Полёт Ю.А. Гагарина вокруг Земли по круговой орбите.

Межпланетные перелёты

Понятие оптимальной траектории полёта к планете. Время полёта к планете и даты стартов.

Луна и её влияние на Землю

Лунный рельеф и его природа, Приливное взаимодействие между Луной и Землёй. Удаление Луны от Земли и замедление вращения Земли. Прецессия земной оси и предварение равноденствий.

Строение солнечной системы

Современные представления о Солнечной системе.

Состав Солнечной системы. Планеты земной группы и планеты гиганты их принципиальные отличия. Облако комет Оорта и пояс Койпера. Размеры тел солнечной системы.

Планета Земля

Форма и размеры Земли. Внутреннее строение Земли. Роль парникового эффекта в формировании климата Земли

Планеты земной группы

Исследования Меркурия, Венеры и Марса, их схожесть с Землёй. Как парниковый эффект греет поверхность Земли и перегревает атмосферу Венеры. Есть ли жизнь на Марсе. Эволюция орбит спутников Марса Фобоса и Деймоса.

Планеты гиганты

Физические свойства Юпитера, Сатурна, Урана и Нептуна. Вулканической деятельности на спутнике Юпитера Ио. Природа колец вокруг планет гигантов.

Планеты карлики и их свойства.

Малые тела Солнечной системы

Природа и движение астероидов. Специфика движения групп астероидов Троянцев и Греков. Природа и движение комет. Пояс Койпера и Облако комет Оорта. Природа метеоров и метеоритов.

Метеоры и метеориты

Природа «падающих звёзд», метеорные потоки и их радианты. Связь между метеорными потоками и кометами. Природа каменных и железных метеоритов. Природа метеоритных кратеров.

Практическая астрофизика и физика Солнца

Методы астрофизических исследований

Устройство и характеристики телескопов рефракторов и рефлекторов. Устройство радиотелескопов, радиоинтерферометры.

Солнце

Основные характеристики Солнца. Определение массы, температуры и химического состава Солнца. Строение солнечной атмосферы. Солнечная активность и её влияние на Землю и биосферу.

Внутреннее строение Солнца

Теоретический расчёт температуры в центре Солнца. Ядерный источник энергии и термоядерные реакции синтеза гелия из водорода, перенос энергии из центра Солнца наружу, конвективная зона. Нейтринный телескоп и наблюдения потока нейтрино от Солнца.

Звёзды

Основные характеристики звёзд

Определение основные характеристик звёзд массы, светимости, температуры и химического состава. Спектральная классификация звезд и её

физические основы. Диаграмма спектральный класс- светимость звёзд, связь между массой и светимостью звезд

Внутреннее строение звёзд

Строение звёзды главной последовательности.

Строение звёзд красных гигантов и сверхгигантов.

Белые карлики, нейтронные звёзды, пульсары и чёрные дыры

Строение звёзд белых карликов и предел на их массу — предел Чандрасекара. Пульсары и нейтронные звёзды. Природа чёрных дыр и их параметры.

Двойные, кратные и переменные звёзды

Наблюдения двойных и кратных звёзд, Затменно-переменные звёзды. Определение масс двойных звёзд. Пульсирующие переменные звёзды, кривые изменения блеска цефеид. Зависимость между светимостью и периодом пульсаций у цефеид. Цефеиды

 маяки во Вселенной, по которым определят расстояния до далёких скоплений и галактик.

Новые и сверхновые звёзды

Характеристики вспышек новых звёзд. Связь новых звёзд с тесными двойными системами, содержащих звезду белый карлик. Перетекание вещества и ядерный взрыв на поверхности белого карлика. Как взрываются сверхновые звёзды. Характеристики вспышек сверхновых звёзд. Гравитационный коллапс белого карлика с массой Чандрасекара в составе тесной двойной звезды — вспышка сверхновой первого типа. Взрыв массивной звезды в конце своей эволюции — взрыв сверхновой второго типа. Наблюдение остатков взрывов сверхновых звёзд.

Эволюция звёзд: рождение жизнь и смерть звёзд

Расчёт продолжительности жизни звёзд разной массы на главной последовательности. Переход в красные гиганты и сверхгиганты после исчерпания водорода. Спокойная эволюция маломассивных звёзд, и гравитационный коллапс и взрыв с образованием нейтронной звезды или чёрной дыры массивной звезды. Определение возраста звёздных скоплений и отдельных звёзд и проверка теории эволюции звёзд.

Млечный путь

Газ и пыль в Галактике

Как образуются отражательные туманности почему светятся диффузные туманности Как концентрируются газовые и пылевые туманности в Галактике

Рассеянные и шаровые звёздные скопления

Наблюдаемые свойства рассеянных звёздных скоплений. Наблюдаемые свойства шаровых звёздных скоплений. Распределение и характер движения скоплений в Галактике. Распределение звёзд, скоплений, газа и пыли в Галактике.

Сверхмассивная чёрная дыра в центре Галактики и космические лучи.

Инфракрасные наблюдения движения звёзд в центре Галактики и обнаружение в нём сверхмассивной черной дыры. Расчёт

параметров сверхмассивной чёрной дыры. Наблюдения космических лучей и их связь со взрывами сверхновых звёзд. Галактики

Как классифицировали галактики по форме и камертонная диаграмма Хаббла. Свойства спиральных, эллиптических и неправильных галактик. Красное смещение в спектрах галактик и определение расстояния до них. Закон Хаббла

Вращение галактик и тёмная материя в них.

Активные галактики и квазары

Природа активности галактик, радиогалактики и взаимодействующие галактики. Необычные свойства квазаров, их связь с ядрами галактик и активностью чёрных дыр в них.

Скопления галактик

Наблюдаемые свойства скоплений галактик, рентгеновское излучение, температура и масса межгалактического газа, необходимость существования тёмной материи в скоплениях галактик. Оценка массы тёмной материи в скоплениях. Ячеистая структура распределения галактики скоплений галактик.

Строение и эволюция Вселенной

Конечность и бесконечность Вселенной – парадоксы классической космологии.

Закон Всемирного тяготения и представления о конечности и бесконечности Вселенной. Фотометрический парадокс и противоречия классических представлений о строении Вселенной и наблюдениями. Необходимость привлечения общей теории относительности для построения модели Вселенной. Связь между геометрическими свойствами пространства Вселенной с распределением и движением материи в ней.

Расширяющаяся Вселенная

Связь средней плотность материи с законом расширения и геометрическими свойствами Вселенной. Евклидова и Неевклидова геометрия Вселенной. Определение радиуса и возраста Вселенной.

Модель «горячей Вселенной» и реликтовое излучения

Образование химических элементов во Вселенной. Обилие гелия во Вселенной и необходимость образования его на ранних этапах эволюции Вселенной. Необходимость не только высокой плотности вещества, но и его высокой температуры на ранних этапах эволюции Вселенной. Реликтовое излучение — излучение которое осталось во Вселенной от горячего и сверх плотного состояния материи на ранних этапах жизни Вселенной. Наблюдаемые свойства реликтового излучения. Почему необходимо привлечение общей теории относительности для построения модели Вселенной.

Современные проблемы астрономии

Ускоренное расширение Вселенной и тёмная энергия.

Наблюдения сверхновых звёзд I типа в далёких галактиках и открытие ускоренного расширения Вселенной. Открытие силы Всемирного отталкивания. Тёмная энергия увеличивает массу Вселенной по мере её расширения. Природа силы Всемирного отталкивания.

Обнаружение планет возле других звёзд.

Наблюдения за движением звёзд и определения масс невидимых спутников звёзд, возмущающих их прямолинейное движение. Методы обнаружения экзопланет. Оценка условий на поверхностях экзопланет. Поиск экзопланет с комфортными условиями для жизни на них

Поиски жизни и разума во Вселенной

Развитие представлений о возникновении и существовании жизни во Вселенной. Современные оценки количества высокоразвитых цивилизаций в Галактике. Попытки обнаружения и посылки сигналов внеземным цивилизациям.

Тематическое планирование

Введение в астрономию (1 ч)

Астрометрия (5 ч)

Небесная механика (3 часа)

Строение Солнечной системы (8 часов)

Контрольная работа №1 по теме «Строение и состав Солнечной системы»

Астрофизика и звёздная астрономия (7 часов)

Млечный Путь – наша Галактика (3 часа)

Галактики (3 часа)

Строение и эволюция Вселенной (2 часа)

Современные проблемы астрономии (3 часа)

Контрольная работа№2 по теме «Звезды и их основные характеристики. Галактики»

2.2.12. Химия

В системе естественнонаучного образования химия как учебный предмет занимает важное место в познании законов природы, формировании научной картины мира, химической грамотности, необходимой для повседневной жизни, навыков здорового и безопасного для человека и окружающей его среды образа жизни, а также в воспитании экологической культуры, формировании собственной позиции по отношению к химической информации, получаемой из разных источников.

Успешность изучения учебного предмета связана с овладением основными понятиями химии, научными фактами, законами, теориями, применением полученных знаний при решении практических задач.

В соответствии с $\Phi \Gamma O C$ СОО химия может изучаться на базовом и углубленном уровнях.

Изучение химии на базовом уровне ориентировано на обеспечение общеобразовательной и общекультурной подготовки выпускников.

Содержание базового курса позволяет раскрыть ведущие идеи и отдельные положения, важные в познавательном и мировоззренческом отношении: зависимость свойств веществ от состава и строения; обусловленность применения веществ их свойствами; материальное единство неорганических и органических веществ; возрастающая роль химии в создании новых лекарств и материалов, в экономии сырья, охране окружающей среды.

Изучение химии на углубленном уровне предполагает полное освоение базового курса и включает расширение предметных результатов и содержания, профессиональному ориентированное на подготовку К последующему образованию; развитие индивидуальных способностей обучающихся путем более глубокого, чем это предусматривается базовым курсом, освоения основ наук, систематических знаний; умение применять полученные знания для решения практических и учебно-исследовательских задач в измененной, нестандартной ситуации; умение систематизировать и обобщать полученные знания. Изучение предмета на углубленном уровне позволяет сформировать у обучающихся умение анализировать, прогнозировать и оценивать с позиции экологической безопасности последствия бытовой и производственной деятельности человека, связанной с получением, применением и переработкой веществ.

Изучение предмета «Химия» в части формирования у обучающихся научного мировоззрения, освоения общенаучных методов познания, а также практического применения научных знаний основано на межпредметных связях с предметами областей естественных, математических и гуманитарных наук.

Программа учебного предмета «Химия» составлена на основе модульного принципа построения учебного материала, не определяет количество часов на изучение учебного предмета и классы, в которых предмет может изучаться. Курсивом в примерных учебных программах выделены элементы содержания, относящиеся к результатам, которым обучающиеся «получат возможность

научиться».

Программа учитывает возможность получения знаний в том числе через практическую деятельность. В программе содержится примерный перечень практических работ. При составлении рабочей программы учитель вправе выбрать из перечня работы, которые считает наиболее целесообразными, с учетом необходимости достижения предметных результатов.

Базовый уровень

Основы органической химии

Появление и развитие органической химии как науки. Предмет органической химии. Место и значение органической химии в системе естественных наук.

Химическое строение как порядок соединения атомов в молекуле согласно их валентности. Основные положения теории химического строения органических соединений А.М. Бутлерова. Углеродный скелет органической молекулы. Кратность химической связи. Зависимость свойств веществ от химического строения молекул. Изомерия и изомеры. Понятие о функциональной группе. Принципы классификации органических соединений. Систематическая международная номенклатура и принципы образования названий органических соединений.

Алканы. Строение молекулы метана. Гомологический ряд алканов. Гомологи. Номенклатура. Изомерия углеродного скелета. Закономерности изменения физических свойств. Химические свойства (на примере метана и этана): реакции замещения (галогенирование), дегидрирования как способы получения важнейших соединений в органическом синтезе. Горение метана как один из основных источников тепла в промышленности и быту. Нахождение в природе и применение алканов. Понятие о циклоалканах.

Алкены. Строение молекулы этилена. Гомологический ряд алкенов. Номенклатура. Изомерия углеродного скелета и положения кратной связи в молекуле. Химические свойства (на примере этилена): реакции присоединения (галогенирование, гидрирование, гидратация, гидрогалогенирование) как получения функциональных производных углеводородов, Полимеризация этилена основное направление его использования. как Полиэтилен крупнотоннажный продукт химического производства. как Применение этилена.

Алкадиены и каучуки. Понятие об алкадиенах как углеводородах с двумя двойными связями. Полимеризация дивинила (бутадиена-1,3) как способ получения синтетического каучука. Натуральный и синтетический каучуки. Вулканизация каучука. Резина. Применение каучука и резины.

Алкины. Строение молекулы ацетилена. Гомологический ряд алкинов. Номенклатура. Изомерия углеродного скелета и положения кратной связи в молекуле. Химические свойства (на примере ацетилена): реакции присоединения (галогенирование, гидрирование, гидратация, гидрогалогенирование) как способ получения полимеров и других полезных продуктов. Горение ацетилена как источник высокотемпературного пламени для сварки и резки металлов.

Применение ацетилена.

Арены. Бензол как представитель ароматических углеводородов. *Строение молекулы бензола*. Химические свойства: реакции замещения (галогенирование) как способ получения химических средств защиты растений, присоединения (гидрирование) как доказательство непредельного характера бензола. Реакция горения. Применение бензола.

Спирты. Классификация, номенклатура, изомерия спиртов. Метанол и этанол как представители предельных одноатомных спиртов. Химические свойства (на примере метанола и этанола): взаимодействие с натрием как способ установления наличия гидроксогруппы, реакция с галогеноводородами как способ получения растворителей, дегидратация как способ получения этилена. Реакция горения: спирты как топливо. Применение метанола и этанола. Физиологическое действие метанола и этанола на организм человека. Этиленгликоль и глицерин как представители предельных многоатомных спиртов. Качественная реакция на многоатомные спирты и ее применение для распознавания глицерина в составе косметических средств. Практическое применение этиленгликоля и глицерина.

Фенол. Строение молекулы фенола. Взаимное влияние атомов в молекуле фенола. Химические свойства: взаимодействие с натрием, гидроксидом натрия, бромом. Применение фенола.

Альдегиды. Метаналь (формальдегид) этаналь (ацетальдегид) И как представители предельных Качественные альдегидов. реакции на карбонильную группу (реакция «серебряного зеркала», взаимодействие гидроксидом меди (II) и применение обнаружения ИХ ДЛЯ альдегидов в промышленных сточных водах. Токсичность альдегидов. Применение формальдегида и ацетальдегида.

Карбоновые кислоты. Уксусная кислота как представитель предельных одноосновных карбоновых кислот. Химические свойства (на примере уксусной кислоты): реакции с металлами, основными оксидами, основаниями и солями как подтверждение сходства с неорганическими кислотами. Реакция этерификации как способ получения сложных эфиров. Применение уксусной кислоты. Представление о высших карбоновых кислотах.

Сложные эфиры и жиры. Сложные эфиры как продукты взаимодействия карбоновых кислот со спиртами. Применение сложных эфиров в пищевой и парфюмерной промышленности. Жиры как сложные эфиры глицерина и высших карбоновых кислот. Растительные и животные жиры, их состав. Распознавание растительных жиров на основании их непредельного характера. Применение жиров. Гидролиз или омыление жиров как способ промышленного получения солей высших карбоновых кислот. Мыла как соли высших карбоновых кислот. Моющие свойства мыла.

Углеводы. Классификация углеводов. Нахождение углеводов в природе. Глюкоза как альдегидоспирт. Брожение глюкозы. Сахароза. *Гидролиз сахарозы*. Крахмал и целлюлоза как биологические полимеры. Химические свойства крахмала и целлюлозы (гидролиз, качественная реакция с йодом на крахмал и ее применение для обнаружения крахмала в продуктах питания). Применение и биологическая роль углеводов. Понятие об искусственных волокнах на примере

ацетатного волокна.

Идентификация органических соединений. *Генетическая связь между классами органических соединений*. Типы химических реакций в органической химии.

Аминокислоты и белки. Состав и номенклатура. Аминокислоты как амфотерные органические соединения. Пептидная связь. Биологическое значение α-аминокислот. Области применения аминокислот. Белки как природные биополимеры. Состав и строение белков. Химические свойства белков: гидролиз, денатурация. Обнаружение белков при помощи качественных (цветных) реакций. Превращения белков пищи в организме. Биологические функции белков.

Теоретические основы химии

Строение вещества. Современная модель строения атома. Электронная конфигурация атома. Основное и возбужденные состояния атомов. Классификация химических элементов (s-, p-, d-элементы). Особенности строения энергетических уровней атомов d-элементов. Периодическая система химических элементов Д.И. Физический смысл Периодического закона Д.И. Причины и закономерности изменения свойств элементов и их соединений по Электронная периодам группам. природа связи. Электроотрицательность. Виды химической связи (ковалентная, металлическая, водородная) и механизмы ее образования. Кристаллические и аморфные вещества. Типы кристаллических решеток (атомная, молекулярная, ионная, металлическая). Зависимость физических свойств вещества от типа кристаллической решетки. Причины многообразия веществ.

Химические реакции. Гомогенные и гетерогенные Скорость реакции. реакции, ее зависимость от различных факторов: природы реагирующих веществ, реагирующих веществ, температуры, площади поверхности, наличия катализатора. Роль катализаторов природе промышленном производстве. Обратимость реакций. Химическое равновесие и его смещение под действием различных факторов (концентрация реагентов или продуктов реакции, давление, температура) для создания оптимальных условий протекания химических процессов. Дисперсные системы. Понятие о коллоидах (золи, гели). Истинные растворы. Реакции в растворах электролитов. pH раствора как показатель кислотности среды. Гидролиз солей. Значение гидролиза в процессах. Окислительно- восстановительные обменных биологических реакции в природе, производственных процессах и жизнедеятельности организмов. Окислительно-восстановительные свойства простых веществ - металлов главных и побочных подгрупп (медь, железо) и неметаллов: водорода, кислорода, галогенов, серы, азота, фосфора, углерода, кремния. Коррозия металлов: виды коррозии, способы защиты металлов от коррозии. Электролиз расплавов. Применение электролиза в промышленности.

Химия и жизнь

Научные методы познания в химии. Источники химической информации. Поиск информации по названиям, идентификаторам, структурным формулам. Моделирование химических процессов и явлений, *химический анализ и синтез* как методы научного познания.

Химия и здоровье. Лекарства, ферменты, витамины, гормоны, минеральные воды. Проблемы, связанные с применением лекарственных препаратов. Вредные привычки и факторы, разрушающие здоровье (курение, употребление алкоголя, наркомания). Рациональное питание. Пищевые добавки. Основы пищевой химии.

Химия в повседневной жизни. Моющие и чистящие средства. *Средства борьбы с бытовыми насекомыми: репелленты, инсектициды*. Средства личной гигиены и косметики. Правила безопасной работы с едкими, горючими и токсичными веществами, средствами бытовой химии.

Химия и сельское хозяйство. Минеральные и органические удобрения. Средства защиты растений.

Химия и энергетика. Природные источники углеводородов. Природный и попутный нефтяной газы, их состав и использование. Состав нефти и ее переработка. Нефтепродукты. Октановое число бензина. Охрана окружающей среды при нефтепереработке и транспортировке нефтепродуктов. Альтернативные источники энергии.

Химия в строительстве. Цемент. Бетон. Подбор оптимальных строительных материалов в практической деятельности человека.

Химия и экология. Химическое загрязнение окружающей среды и его последствия. Охрана гидросферы, почвы, атмосферы, флоры и фауны от химического загрязнения.

Примерные темы практических работ (на выбор учителя):

Качественное определение углерода, водорода и хлора в органических веществах.

Конструирование шаростержневых моделей молекул органических веществ.

Распознавание пластмасс и волокон. Получение искусственного шелка.

Решение экспериментальных задач на получение органических веществ.

Решение экспериментальных задач на распознавание органических веществ.

Идентификация неорганических соединений. Получение, собирание и распознавание газов.

Решение экспериментальных задач по теме «Металлы». Решение экспериментальных задач по теме «Неметаллы».

Решение экспериментальных задач по теме «Генетическая связь между классами неорганических соединений».

Решение экспериментальных задач по теме «Генетическая связь между классами органических соединений».

Получение этилена и изучение его свойств. Получение уксусной кислоты и изучение ее свойств. Гидролиз жиров.

Изготовление мыла ручной работы. Химия косметических средств.

Исследование свойств белков. Основы пищевой химии.

Исследование пищевых добавок.

Свойства одноатомных и многоатомных спиртов. Химические свойства

альдегидов.

Синтез сложного эфира. Гидролиз углеводов.

Устранение временной жесткости воды.

Качественные реакции на неорганические вещества и ионы.

Исследование влияния различных факторов на скорость химической реакции.

Определение концентрации раствора аскорбиновой кислоты методом титрования.

Химия (базовый уровень).

По учебному плану Школы предмет «Химия» на уровне среднего общего образования (при изучении предмета на базовом уровне) изучается в объёме 136 часов.

Распределение часов, предназначенных на изучение курса химии в 10-11 классах, осуществляется в соответствии с федеральным государственным образовательным стандартом:

10 класс: 68 часов (по 2 часа в неделю), 11 класс: 68 часов (по 2 часа в неделю).

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ

Предметные результаты:

Выпускник на базовом уровне научится:

- раскрывать на примерах роль химии в формировании современной научной картины мира и в практической деятельности человека, взаимосвязь между химией и другими естественными науками;
- иллюстрировать на примерах становление и эволюцию органической химии как науки на различных исторических этапах ее развития;
- устанавливать причинно-следственные связи между строением атомов химических элементов и периодическим изменением свойств химических элементов и их соединений в соответствии с положением химических элементов в периодической системе;
- анализировать состав, строение и свойства веществ, применяя положения основных химических теорий: химического строения органических соединений А.М. Бутлерова, строения атома, химической связи, электролитической диссоциации кислот и оснований; устанавливать причинно-следственные связи между свойствами вещества и его составом, и строением;
- применять правила систематической международной номенклатуры как средства различения и идентификации веществ по их составу и строению;
- составлять молекулярные и структурные формулы неорганических и органических веществ как носителей информации о строении вещества, его свойствах и принадлежности к определенному классу соединений;

- объяснять природу и способы образования химической связи: ковалентной (полярной, неполярной), ионной, металлической, водородной с целью определения химической активности веществ;
- характеризовать закономерности в изменении химических свойств простых веществ, водородных соединений, высших оксидов и гидроксидов;
- приводить примеры химических реакций, раскрывающих характерные химические свойства неорганических и органических веществ изученных классов с целью их идентификации и объяснения области применения;
- устанавливать зависимость скорости химической реакции и смещения химического равновесия от различных факторов с целью определения оптимальных условий протекания химических процессов;
- устанавливать генетическую связь между классами неорганических и органических веществ для обоснования принципиальной возможности получения неорганических и органических соединений заданного состава и строения;
- определять характер среды в результате гидролиза неорганических и органических веществ и приводить примеры гидролиза веществ в повседневной жизни человека;
- приводить примеры окислительно-восстановительных реакций в природе, производственных процессах и жизнедеятельности организмов;
- обосновывать практическое использование неорганических и органических веществ и их реакций в промышленности и быту;
- проводить расчеты на основе химических формул и уравнений реакций: нахождение молекулярной формулы органического вещества по его плотности и массовым долям элементов, входящих в его состав, или по продуктам сгорания; расчеты массовой доли (массы) химического соединения в смеси; расчеты массы (объема, количества вещества) продуктов реакции, если одно из веществ дано в избытке (имеет примеси); расчеты массовой или объемной доли выхода продукта реакции от теоретически возможного;
- использовать методы научного познания: анализ, синтез, моделирование химических процессов и явлений при решении учебно-исследовательских задач по изучению свойств, способов получения и распознавания органических веществ владеть правилами безопасного обращения с едкими, горючими и токсичными веществами, средствами бытовой химии;
- критически оценивать и интерпретировать химическую информацию, содержащуюся в сообщениях средств массовой информации, ресурсах Интернета, научно-популярных статьях с точки зрения естественно-научной корректности в целях выявления ошибочных суждений и формирования собственной позиции;

Выпускник получит возможность научиться:

• формулировать цель исследования, выдвигать и проверять экспериментально гипотезы о химических свойствах веществ на основе их состава и строения, их способности вступать в химические реакции, о характере и продуктах различных химических реакций;

- самостоятельно планировать и проводить химические эксперименты с соблюдением правил безопасной работы с веществами и лабораторным оборудованием;
- характеризовать роль азотосодержащих гетероциклических соединений и нуклеиновых кислот как важнейших биологически активных веществ;
- прогнозировать возможность протекания окислительно-восстановительных реакций, лежащих в основе природных и производственных процессов.

Личностные результаты освоения основной образовательной программы:

- ориентация обучающихся на достижение личного счастья, реализацию позитивных жизненных перспектив, инициативность, креативность, готовность и способность к личностному самоопределению, способность ставить цели и строить жизненные планы;
- готовность и способность обеспечить себе и своим близким достойную жизнь в процессе самостоятельной, творческой и ответственной деятельности;
- готовность и способность обучающихся к отстаиванию личного достоинства, собственного мнения, готовность и способность вырабатывать собственную позицию по отношению к общественно-политическим событиям прошлого и настоящего на основе осознания и осмысления истории, духовных ценностей и достижений нашей страны;
- принятие и реализация ценностей здорового и безопасного образа жизни, бережное, ответственное и компетентное отношение к собственному физическому и психологическому здоровью;
 - неприятие вредных привычек: курения, употребления алкоголя, наркотиков.
- нравственное сознание и поведение на основе усвоения общечеловеческих ценностей, толерантного сознания и поведения в поликультурном мире, готовности и способности вести диалог с другими людьми, достигать в нем взаимопонимания, находить общие цели и сотрудничать для их достижения;
- способность к сопереживанию и формирование позитивного отношения к людям, в том числе к лицам с ограниченными возможностями здоровья и инвалидам; бережное, ответственное и компетентное отношение к физическому и психологическому здоровью других людей, умение оказывать первую помощь;
- формирование выраженной в поведении нравственной позиции, в том числе способности к сознательному выбору добра, нравственного сознания и поведения на основе усвоения общечеловеческих ценностей и нравственных чувств (чести, долга, справедливости, милосердия и дружелюбия);
- развитие компетенций сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности.
- мировоззрение, соответствующее современному уровню развития науки, значимости науки, готовность к научно-техническому творчеству, владение достоверной информацией о передовых достижениях и открытиях мировой и отечественной науки, заинтересованность в научных знаниях об устройстве мира и общества;

- готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- экологическая культура, бережное отношения к родной земле, природным богатствам России и мира; понимание влияния социально-экономических процессов на состояние природной и социальной среды, ответственность за состояние природных ресурсов; умения и навыки разумного природопользования, нетерпимое отношение к действиям, приносящим вред экологии; приобретение опыта экологонаправленной деятельности;
- эстетическое отношения к миру, готовность к эстетическому обустройству собственного быта.
- потребность трудиться, уважение к труду и людям труда, трудовым достижениям, добросовестное, ответственное и творческое отношение к разным видам трудовой деятельности;
- готовность к самообслуживанию, включая обучение и выполнение домашних обязанностей.

Метапредметные результаты освоения программы по химии:

У учащихся будут сформированы универсальные учебные действия:

- регулятивные:

- самостоятельно определять цели, задавать параметры и критерии, по которым можно определить, что цель достигнута;
- оценивать возможные последствия достижения поставленной цели в деятельности, собственной жизни и жизни окружающих людей, основываясь на соображениях этики и морали;
- ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
- оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной цели;
- выбирать путь достижения цели, планировать решение поставленных задач, оптимизируя материальные и нематериальные затраты;
- организовывать эффективный поиск ресурсов, необходимых для достижения поставленной цели;
- сопоставлять полученный результат деятельности с поставленной заранее целью.

- познавательные:

- критически оценивать и интерпретировать информацию с разных позиций, распознавать и фиксировать противоречия в информационных источниках;
- использовать различные модельно-схематические средства для представления существенных связей и отношений, а также противоречий, выявленных в информационных источниках;

- выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможностей для широкого переноса средств и способов действия;
 - менять и удерживать разные позиции в познавательной деятельности.

- коммуникативные:

- осуществлять деловую коммуникацию как со сверстниками, так и со взрослыми (как внутри образовательной организации, так и за ее пределами), подбирать партнеров для деловой коммуникации исходя из соображений результативности взаимодействия, а не личных симпатий;
- при осуществлении групповой работы быть как руководителем, так и членом команды в разных ролях (генератор идей, критик, исполнитель, выступающий, эксперт и т.д.);
- развернуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств;
- распознавать конфликтогенные ситуации и предотвращать конфликты до их активной фазы, выстраивать деловую и образовательную коммуникацию, избегая личностных оценочных суждений.

СОДЕРЖАНИЕ 10 класс. 68 часов

Тема 1. «Теория строения органических соединений» (12 ч.)

Предмет органической химии. Особенности строения и свойств органических соединений. Значение и роль органической химии в системе естественных наук в жизни общества. Краткий очерк истории развития органической химии.

Основные положения теории строения А.М. Бутлерова. Предпосылки создания теории. Представление о теории типов и радикалов. Работы А. Кекуле. Химическое строение и свойства органических веществ. Изомерия на примере бутана и изобутана.

Электронное облако и орбиталь, их формы: s и р. Электронные и электроннографические формулы атома углерода в нормальном и возбуждённом состояниях. Ковалентная химическая связь, ее полярность и кратность. Сравнение обменного и донорно-акцепторного механизмов образования ковалентной связи.

Валентные состояния атома углерода. Виды гибридизации: sp3-гибридизация (на примере молекулы метана), sp2-гибридизация (на примере молекулы этилена), sp-гибридизация (на примере молекулы ацетилена). Геометрия молекул рассмотренных веществ и характеристика видов ковалентной связи в них.

Классификация органических соединений по строению углеродного скелета: ациклические (алканы, алкадиены), карбоциклические, алкены, алкины, Классификация (циклоалканы арены) И гетероциклические соединения. органических соединений по функциональным группам: спирты, фенолы, простые эфиры, альдегиды кетоны, карбоновые кислоты, сложные эфиры. Углеводы. Азотосодержащие соединения: нитросоединения, амины, аминокислоты.

Номенклатура тривиальная и ИЮПАК. Принципы образования названий органических соединений по ИЮПАК.

Виды изомерии в органической химии: структурная и пространственная. Разновидности структурной изомерии: изомерия «углеродного скелета», изомерия положения (кратной связи и функциональной группы), межклассовая изомерия. Разновидности пространственной изомерии. Геометрическая (цис-, транс-) изомерия на примере алкенов и циклоалканов. Оптическая изомерия на примере аминокислот.

Тема 2. «Механизмы органических реакций» (8 ч.)

Классификация реакций в органической химии. Механизмы реакций (общая характеристика).

Радикальные реакции замещения. Гомолитические (радикальные) реакции. Реакции радикального замещения (алканы), разложения (крекинг алканов).

Нуклеофильные реакции замещения. Гетеролитические (ионные) реакции. Нуклеофилы. Нуклеофильное замещение в алифатическом ряду: в алкилгалогенидах, спиртах. Нуклеофильное замещение у карбоновых кислот и их производных: реакции этерификации. Гидролиз сложных эфиров.

Электрофильные реакции замещения. Реакции замещения в ароматическом ряду. Правила ориентаций для реакций электрофильного замещения. Влияние строения ароматического соединения на направление реакций замещения.

Радикальные реакции присоединения. Гомолитические (радикальные) реакции. Реакции присоединения (алкены, алкадиены).

Нуклеофильные реакции присоединения. Гетеролитические (ионные) реакции. Нуклеофилы.

Электрофильные реакции присоединения. Правила ориентаций для реакций электрофильного присоединения.

Реакции окисления органических молекул. механизмы реакций. Механизм реакций окисления органических молекул.

Тема 3. « Углеводороды (алифатические и ароматические)» (24 ч.)

Понятие об углеводородах. Природные источники углеводородов. Нефть и ее промышленная переработка. Фракционная перегонка, термический и каталитический крекинг. Природный газ, его состав и практическое использование. Каменный уголь. Коксование каменного угля.

Алканы. Гомологический ряд и общая формула алканов. Строение молекулы метана и других алканов. Изомерия и номенклатура алканов. Физические и химические свойства алканов: реакции замещения,горение алканов в различных условиях, термическое разложение алканов, изомеризация алканов. Применение алканов. Промышленные способы получения: крекинг алканов, фракционная перегонка нефти.

Алкены. Гомологический ряд и общая формула алкенов. Строение молекулы этилена и других алкенов. Изомерия алкенов: структурная и пространственная. Номенклатура и физические свойства алкенов. Получение этиленовых углеводородов из алканов, галогеналканов, спиртов. Реакции присоединения (гидрирование, гидрогалогенирование, галогенирование, гидратация). Реакции окисления и полимеризации алкенов. Применение алкенов на основе их свойств.

Решение расчетных задач на установление химической формулы вещества по массовым долям элементов.

Алкины. Гомологический ряд алкинов. Общая формула. Строение молекулы ацетилена и других алкинов. Изомерия алкинов. Номенклатура ацетиленовых

углеводородов. Получение алкинов: карбидный способ. Физические свойства алкинов. Реакции присоединения: галогенирование, гидрирование, гидрогалогенирование, гидратация (реакция Кучерова). Тримеризация алкинов. Окисление. Применение алкинов.

Арены. Бензол как представитель аренов. Строение молекулы бензола, сопряжение пи-связей. Получение аренов. Физические свойства бензола. Реакции электрофильного замещения с участием бензола: галогенирование, нитрование, алкилирование. Ориентация при электрофильном замещении. Реакции боковых цепей алкилбензолов. Способы получения. Применение бензола и его гомологов.

Решение расчетных задач на вывод формул органических веществ по массовым долям и по продуктам сгорания.

Демонстрации.

1.Отношение веществ к растворам перманганата калия и бромной воде.

Лабораторные опыты.

- 1. Изготовление моделей алканов и непредельных углеводородов
- 2.Взаимодействие алканов с бромом.

Тема 4: «Кислородсодержащие органические соединения» (16 ч.)

Спирты. Состав и классификация спиртов (по характеру углеводородного атомности), номенклатура. Изомерия спиртов гидроксильных групп, межклассовая, «углеродного скелета»). Физические свойства спиртов, их получение. Межмолекулярная водородная связь. Химические свойства спиртов, обусловленные наличием в молекулах гидроксогрупп: образование алкоголятов, взаимодействие с галогеноводородами, межмолекулярная и внутри молекулярная дегидратация, этерификация, окисление и дегидрирование спиртов. Особенности свойств многоатомных спиртов. Качественная реакция на многоатомные спирты. Важнейшие представители спиртов: этиленгликоль, глицерин. Физиологическое действие метанола и этанола.

Фенолы. Строение, изомерия, номенклатура фенолов, их физические свойства и получение. Химические свойства фенолов. Кислотные свойства. Взаимное влияние атомов и групп в молекулах органических веществ на примере фенола. Поликонденсация фенола с формальдегидом. Качественная реакция на фенол. Применение фенола. Многоатомные фенолы.

Демонстрации.

- 1. Качественная реакция на многоатомные спирты.
- 2. Качественная реакция на фенол (с хлоридом железа (III).

Лабораторные опыты.

Свойства глицерина.

Альдегиды и кетоны. Классификация, строение их молекул, изомерия и номенклатура. Особенности строения карбонильной группы. Физические свойства формальдегида и его гомологов. Химические свойства альдегидов, обусловленные наличием в молекуле карбонильной группы атомов (гидрирование, окисление аммиачными растворами оксида серебра и гидроксида меди (II)). Качественные реакции на альдегиды.

Демонстрации.

1. Реакция «серебряного зеркала».

Карбоновые кислоты. Строение молекул карбоновых кислот и карбоксильной группы. Классификация и номенклатура карбоновых кислот. Физические свойства карбоновых кислот и их зависимость от строения молекул. Карбоновые кислоты в природе. Биологическая роль карбоновых кислот. Общие свойства неорганических и (взаимодействие органических кислот c металлами, оксидами металлов, основаниями, солями). Влияние углеводородного радикала на силу карбоновой Реакция этерификации, условия ee проведения. Одноосновные многоосновные, непредельные карбоновые кислоты. Отдельные представители кислот.

Лабораторные опыты.

Свойства уксусной кислоты.

Свойства бензойной кислоты.

Сложные эфиры. Строение сложных эфиров, изомерия (межклассовая и «углеродного скелета»). Номенклатура сложных эфиров. Гидролиз сложных эфиров. Равновесие реакции: этерификации - гидролиза; факторы влияющие на гидролиз.

Жиры - сложные эфиры глицерина и карбоновых кислот. Состав и строение молекул жиров. Классификация жиров. Омыление жиров, получение мыла. Мыла, объяснение их моющих свойств. Жиры в природе. Биологическая функция жиров.

Демонстрации.

Получение сложного эфира.

Моносахариды. Их классификация. Гексозы и их представители. Глюкоза, ее физические свойства, строение молекулы. Взаимодействие с гидроксидом меди(II) при комнатной температуре и нагревании, реакция «серебряного зеркала». Реакции брожения глюкозы: спиртового, молочнокислого. Глюкоза в природе. Биологическая роль глюкозы. Применение глюкозы на основе ее свойств. Фруктоза как изомер глюкозы. Сравнение строения молекул и химических свойств глюкозы и фруктозы. Фруктоза в природе и ее биологическая роль.

Дисахариды. Строение, общая формула и представители. Сахароза, её строение и биологическая роль. Гидролиз дисахаридов. Промышленное получение сахарозы из природного сырья. Полисахариды. Общая формула и представители: гликоген, крахмал, целлюлоза (сравнительная характеристика). Физические свойства полисахаридов. Химические свойства полисахаридов. Гидролиз полисахаридов. Качественная реакция на крахмал. Полисахариды в природе, их биологическая роль.

Демонстрации.

Взаимодействие глюкозы с гидроксидом меди (II) без нагревания и при нагревании.

Реакция «серебряного зеркала» глюкозы.

Тема 5: «Азотсодержащие органические соединения» (10 ч.)

Амины. Определение аминов. Строение аминов. Классификация, изомерия и номенклатура аминов. Алифатические и ароматические амины. Анилин. Получение аминов: алкилирование аммиака, восстановление нитросоединений (реакция Зинина).

Физические свойства аминов. Химические свойства аминов: взаимодействие с кислотами и водой. Основность аминов. Гомологический ряд ароматических аминов.

Состав строение Аминокислоты. молекул аминокислот, изомерии. **Двойственность** кислотно-основных свойств аминокислот причины. Взаимодействие аминокислот с основаниями, образование сложных эфиров. Взаимолействие Образование аминокислот \mathbf{c} сильными кислотами. внутримолекулярных солей. Реакция поликонденсации аминокислот.

Белки - природные биополимеры. Пептидная связь. Пептиды. Белки. Первичная, вторичная и третичная структуры белков. Химические свойства белков: горение, денатурация, гидролиз, качественные реакции. Биологические функции белков. Значение белков. Четвертичная структура белков как агрегация белковых и небелковых молекул. Глобальная проблема белкового голодания и пути ее решения. Понятие ДНК и РНК. Понятие о нуклеотиде, пиримидиновых и пуриновых основаниях. Первичная, вторичная и третичная структуры ДНК. Биологическая роль ДНК и РНК. Генная инженерия и биотехнология.

Демонстрации.

- 1. Взаимодействие анилина с соляной кислотой и с бромной водой.
- 2. Денатурация белков.

Лабораторные опыты.

1. Цветные реакции на белки.

11 класс. 68 часов

Тема 1: «Строение атома» (6 ч)

Атом — **сложная частица**. Ядро и электронная оболочка. Электроны, протоны и нейтроны. Микромир и макромир. Дуализм частиц микромира.

Состояние электронов в атоме. Электронное облако и орбиталь. Квантовые числа. Форма орбиталей (s, p). Энергетические уровни и подуровни. Строение электронных оболочек атомов. Электронные конфигурации атомов элементов. Правило Гунда. Электронно-графические формулы атомов элементов. Электронная классификация элементов: s-,p-, d- и f-семейства.

Валентные возможности атомов химических элементов. Валентные электроны. Валентные возможности атомов химических элементов, обусловленные числом неспаренных электронов в нормальном и возбужденном состояниях. Сравнение понятий «валентность» и «степень окисления».

Периодический закон и периодическая система химических элементов Д. И. Менделеева и строение атома. Предпосылки открытия периодического закона: накопление фактологического материала, работы предшественников (И. Я. Берцелиуса, И. В. Деберейнера, А. Э. Шанкуртуа, Дж. А. Ньюлендса, Л. Ю. Мейера); съезд химиков в Карлсруэ. Личностные качества Д. И. Менделеева.

Открытие Д. И. Менделеевым периодического закона. Первая формулировка периодического закона. Горизонтальная, вертикальная и диагональная периодические зависимости.

Периодический закон и строение атома. Изотопы. Современная трактовка понятия «химический элемент». Периодическая система Д. И. Менделеева и строение

атома. Физический смысл порядкового номера элементов, номеров группы и периода. Причины изменения металлических и неметаллических свойств элементов в группах и периодах, в том числе больших и сверхбольших.

Расчетные задачи

- 1. Вычисление массовой доли химического элемента в соединении.
- 2. Установление простейшей формулы вещества по массовым долям химических элементов.

Тема 2. «Строение вещества.» (8 ч)

Химическая связь. Единая природа химической связи. Ионная химическая связь и ионные кристаллические решетки. Ковалентная химическая связь и ее классификация: по механизму образования (обменный и донорно-акцепторный), по электроотрицательности (полярная и неполярная), по кратности (одинарная, двойная, тройная и полуторная). Полярность связи и полярность молекулы. Кристаллические решетки веществ с ковалентной связью: атомная и молекулярная. Металлическая химическая связь и металлические кристаллические решетки.

Единая природа химических связей: ионная связь как предельный случай ковалентной полярной связи; переход одного вида связи в другой; разные виды связи в одном веществе и т. д.

Свойства ковалентной химической связи. Насыщаемость, поляризуемость, направленность. Геометрия молекул.

Гибридизация орбиталей и геометрия молекул. sp^3 -гибридизация у алканов, воды, аммиака, алмаза; sp^2 -гибридизация у соединений бора, алкенов, аренов, диенов и графита; sp-гибридизация у соединений бериллия, алкинов и карбина. Геометрия молекул названных веществ.

Расчетные задачи.

- 3. Расчеты, связанные с понятиями «массовая доля» и «объемная доля» компонентов смеси. Способы количественного выражения состава вещества: массовая доля, молярная концентрация и объемная доля растворенного вещества
 - 4. Расчет объемных отношений газов при химических реакциях.
- 5.Вычисление массы веществ или объема газов по известному количеству вещества одного из вступивших в реакцию или получающихся веществ.

Демонстрации. Модели кристаллических решеток веществ с различным типом связей. Модели молекул различной геометрии. Модели кристаллических решеток алмаза и графита. Образцы неорганических полимеров: серы пластической, фосфора красного, кварца и др.

Растворение окрашенных веществ в воде (сульфата меди (II), перманганата калия, хлорида железа (III)).

Лабораторные опыты

Определение характера среды раствора с помощью универсального индикатора. Проведение реакций ионного обмена для характеристики свойств электролитов.

Тема 3. Физико-химические закономерности прохождения химических реакций (6 часов)

Классификация химических реакций в органической и неорганической химии. Понятие о химической реакции. Реакции, идущие без изменения

качественного состава веществ: изомеризация и полимеризация. Реакции, идущие с изменением состава веществ: по числу и составу реагирующих и образующихся веществ (разложения, соединения, замещения, обмена); по изменению степеней окисления элементов (окислительно-восстановительные реакции и неокислительно-восстановительные реакции); Метод электронного баланса. Особенности классификации реакций в органической химии.

Вероятность протекания химических реакций. Закон сохранения энергии. Внутренняя энергия и экзо- и эндотермические реакции. Тепловой эффект химических реакций. Термохимические уравнения. Теплота образования.

Скорость химических реакций. Понятие о скорости реакции. Скорость гомои гетерогенной реакции. Энергия активации. Элементарные и сложные реакции. Факторы, влияющие на скорость химической реакции: природа реагирующих веществ; температура (закон Вант-Гоффа); концентрация (основной закон химической кинетики); катализаторы. Катализ: гомо- и гетерогенный; механизм действия катализаторов.

Обратимость химических реакций. Химическое равновесие. Понятие о химическом равновесии. Равновесные концентрации. Динамичность химического равновесия. Константа равновесия. Факторы, влияющие на смещение равновесия: концентрация, давление и температура. Принцип Ле Шателье.

Тема 4. Закономерности прохождения химических реакций в растворах (10 ч)

Электролитическая диссоциация. Электролиты и неэлектролиты. Электролитическая диссоциация. Механизм диссоциации веществ с различным типом химической связи. Свойства ионов. Катионы и анионы. Кислоты, соли, основания в свете электролитической диссоциации.

Гидролиз. Понятие «гидролиз». Гидролиз неорганических веществ. Гидролиз солей — три случая. Ступенчатый гидролиз. Необратимый гидролиз. Практическое применение гидролиза.

Расчетные задачи.

- 6. Расчеты по термохимическим уравнениям.
- 7. Расчет средней скорости реакции по концентрациям реагирующих веществ.

Демонстрации. Получение кислорода из пероксида водорода и воды; реакции, идущие с образованием осадка, газа и воды; свойства металлов;. Реакции горения; реакции эндотермические на примере реакции разложения (, калийной селитры, известняка или мела) и экзотермические на примере реакции гашение извести и растворения концентрированной серной кислоты в воде.). Индикаторы и изменение их окраски в различных средах. Гидролиз карбонатов, сульфатов, силикатов щелочных металлов; нитратов цинка или свинца (II). Гидролиз карбида кальция.

Лабораторные опыты.

1.Проведение реакций ионного обмена для характеристики свойств электролитов

Тема 5. Химические свойства соединений металлов (20 ч)

Классификация неорганических веществ. Простые и сложные вещества. Оксиды, их классификация. Гидроксиды (основания, кислородсодержащие кислоты, амфотерные гидроксиды). Кислоты, их классификация. Основания, их

классификация. Соли средние, кислые, основные и комплексные.

Металлы. Положение металлов в периодической системе Д.И. Менделеева и строение их атомов. Простые вещества — металлы: строение кристаллов и металлическая химическая связь. Общие физические свойства металлов. *Ряд стандартных электродных потенциалов*. Общие химические свойства металлов (восстановительные свойства): взаимодействие с неметаллами (кислородом, галогенами, серой, азотом, водородом), с водой, кислотами и солями в растворах, со щелочами. Значение металлов в природе и в жизни организмов.

Коррозия металлов. Понятие «коррозия металлов». Химическая коррозия. Электрохимическая коррозия. Способы защиты металлов от коррозии.

Общие способы получения металлов. Металлы в природе. Металлургия и ее виды: пиро-, гидро- и электрометаллургия. Электролиз расплавов и растворов соединений металлов и его практическое значение.

Щелочные металлы. Общая характеристика подгруппы. Физические и химические свойства лития, натрия и калия. Их получение и применение, нахождение в природе. Оксиды и пероксиды натрия и калия. Едкие щелочи, их свойства, получение и применение. Соли щелочных металлов. Распознавание катионов натрия и калия.

Щелочно-земельные металлы. Общая характеристика подгруппы. Физические и химические свойства магния и кальция, их получение и применение, нахождение в природе. Соли кальция и магния, их значение в природе и жизни человека.

Алюминий, его физические и химические свойства, получение и применение, нахождение в природе. Алюмосиликаты. Амфотерность оксида и гидроксида алюминия. Соли алюминия.

Тема 6. Химические свойства соединений неметаллов (20 ч)

Неметаллы. Положение неметаллов в периодической системе Д.И. Менделеева, строение их атомов. Электроотрицательность. Инертные газы.

Двойственное положение водорода в периодической системе. Неметаллы — простые вещества. Их атомное и молекулярное строение. Аллотропия и ее причины. Химические свойства неметаллов. Окислительные свойства: взаимодействие с металлами, водородом, менее электроотрицательными неметаллами, некоторыми сложными веществами. Восстановительные свойства неметаллов в реакциях со фтором, кислородом, сложными веществами-окислителями (азотной и серной кислотами и др.).

Водородные соединения неметаллов. Получение их синтезом и косвенно. Строение молекул и кристаллов этих соединений. Физические свойства. Отношение к воде. Изменение кислотно-основных свойств в периодах и группах.

Водород. Положение водорода в Периодической системе. Соединения водорода с металлами и неметаллами. Вода.

Галогены. Общая характеристика подгруппы галогенов. Особенности химии фтора. Галогеноводороды. Получение галогеноводородов. Галогеноводородные кислоты и их соли — галогениды. Качественная реакция на галогенид-ионы. Кислородсодержащие соединения хлора.

Применение галогенов и их важнейших соединений.

Кислород, его физические и химические свойства, получение и применение,

нахождение в природе. Аллотропия. Озон, его свойства, получение и применение. Оксиды и пероксиды. Пероксид водорода, его окислительные свойства и применение.

Сера. Аллотропия серы. Физические и химические свойства серы, ее получение и применение, нахождение в природе. Сероводород, его физические и химические свойства, получение и применение, нахождение в природе. Сульфиды. Оксид серы (IV), его физические и химические свойства, получение и применение. Оксид серы (VI), его физические и химические свойства, получение и применение. Сернистая кислота и сульфиты. Серная кислота, свойства разбавленной и концентрированной серной кислот. Серная кислота как окислитель, сульфаты. Качественные реакции на сульфид-, сульфит- и сульфат-ионы.

Азот, его физические и химические свойства, получение и применение, нахождение в природе. Нитриды. Аммиак, его физические и химические свойства, получение и применение. Аммиачная вода. Образование иона аммония. Соли аммония, их свойства, получение и применение. Качественная реакция на ион аммония. Оксид азота (II), его физические и химические свойства, получение и применение. Оксид азота (IV), его физические и химические свойства, получение и применение. Оксид азота (III) и азотистая кислота, оксид азота (V) и азотная кислота. Свойства азотной кислоты, ее получение и применение. Нитраты, их физические и химические свойства, применение.

Фосфор. Аллотропия фосфора. Свойства, получение и применение белого и красного фосфора. Оксиды фосфора (III и V). Фосфорные кислоты. Ортофосфаты.

Углерод. Аллотропия углерода (алмаз, графит). Активированный уголь. Адсорбция. Свойства, получение и применение угля. Карбиды кальция, алюминия. Угарный и углекислый газы, их физические и химические свойства, получение и применение. Угольная кислота и ее соли (карбонаты и гидрокарбонаты). Качественная реакция на карбонат-ион.

Кремний, аллотропия, физические и химические свойства кремния, получение и применение, нахождение в природе. Силаны. Оксид кремния (IV). Кремниевые кислоты, силикаты. Силикатная промышленность.

Генетическая связь между классами органических и неорганических соединений. Понятие о генетической связи и генетических рядах в неорганической и органической химии. Генетические ряды металла (на примере кальция и железа), неметалла (на примере серы и кремния), переходного элемента (на примере цинка). Генетические ряды и генетическая связь в органической химии (для соединений, содержащих два атома углерода в молекуле). Единство мира веществ.

Расчетные задачи.

- 8. Вычисление массы или объема продуктов реакции по известной массе или объему исходного вещества, содержащего примеси.
- 9. Вычисление массы исходного вещества, если известен практический выход и массовая доля его от теоретически возможного.
- 10. Вычисления по химическим уравнениям реакций, если одно из реагирующих веществ дано в избытке.
- 11. Определение молекулярной формулы вещества по массовым долям элементов.
 - 12. Комбинированные задачи.

Демонстрации. Взаимодействие металлов с неметаллами и водой.

Взаимодействие оксида кальция с водой.

Взаимодействие а) щелочных металлов с водой, б) цинка с растворами соляной и серной кислот; в) железа с раствором медного купороса; ж) алюминия с раствором едкого натра.

Отношение алюминия к концентрированной азотной кислоте.

Образцы металлов, их оксидов и некоторых солей.

Горение железа в кислороде и хлоре.

Опыты, выясняющие отношение железа к концентрированным кислотам.

Модели кристаллических решеток иода, алмаза, графита. Получение и свойства хлороводорода, соляной кислоты и аммиака. Взаимодействие аммиака с хлороводородом и водой. Термическое разложение солей аммония. Свойства соляной, разбавленной серной кислот. Взаимодействие концентрированных серной, азотной кислот и разбавленной азотной кислоты с медью. Взаимодействие серы с кислородом. Получение кремниевой кислоты. Получение углекислого газа, Взаимодействие его с водой и твердым гидроксидом натрия

Лабораторные опыты.

Ознакомление с образцами металлов и сплавов.

Получение гидроксида алюминия и исследование его свойств.

Окислительные свойства перманганата калия и дихромата калия в разных средах.

Взаимодействие гидроксидов железа с кислотами.

Решение экспериментальных задач на распознавание соединений металлов.

Изучение свойств соляной кислоты.

Ознакомление с серой и ее природными соединениями.

Взаимодействие солей аммония со щелочью.

Ознакомление с различными видами удобрений. Качественные реакции на соли аммония и нитраты.

Решение экспериментальных задач на распознавание веществ.

Ознакомление со свойствами карбонатов и гидрокарбонатов.

Практические занятия

- 2.Получение и собирание газов (кислород, аммиак, оксид углерода (IV) и др.), опыты с ними.
 - 3. Исследование восстановительных свойств металлов.
 - 4.Опыты, характеризующие свойства соединений металлов.

Резервное время предлагается использовать на решение окислительно - восстановительных реакций курса органической и неорганической химии, а также для решения задач.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

10 класс

			Практическая часть программы		
Nº	Наименование темы	Количество часов	Контрольная работа	Практическая работа	Диктант
1	Теория строения органических соединений	12			2
2	Механизмы органических реакций	8	2		
3	Углеводороды	22	2	4	
4	Кислородсодержащие органические соединения	16	2	2	
5	Азотсодержащие органические соединения	10	2		

11 класс

			Практическая часть программы			
Nº	Наименование темы	Количество	Контрольная	Практическая	Диктант	
		часов	работа	работа		
1	Строение атома.	6			2	
	Периодический закон					
2	Строение вещества.	8	2			
3	Физико-химические	6		2		
	закономерности					
	прохождения химических					
	реакций					
4	Закономерности	10	2			
	прохождения химических					
	реакций в растворах					
5	Химические свойства	20	2	2		
	соединений металлов					
6	Химические свойства	18	2	2		
	соединений неметаллов					

2.2.13. Биология

В системе естественнонаучного образования биология как учебный предмет занимает важное место в формировании: научной картины мира; функциональной повседневной грамотности, необходимой для жизни; навыков здорового и безопасного для человека и окружающей среды образа жизни; экологического сознания; ценностного отношения к живой природе и человеку; собственной позиции по отношению к биологической информации, получаемой из разных источников. Изучение биологии создает условия для формирования у обучающихся интеллектуальных, коммуникационных информационных гражданских, И компетенций

Освоение программы по биологии обеспечивает овладение основами исследовательской деятельности, научными методами решения различных теоретических и практических задач.

Изучение биологии на базовом уровне ориентировано на обеспечение общеобразовательной и общекультурной подготовки выпускников. Изучение биологии на углубленном уровне ориентировано на: подготовку к последующему профессиональному образованию; развитие индивидуальных способностей обучающихся путем более глубокого, чем предусматривается базовым уровнем, овладения основами биологии И методами изучения органического мира. Изучение биологии на углубленном уровне обеспечивает: применение полученных решения практических знаний ДЛЯ исследовательских задач в измененной, нестандартной умение систематизировать И обобщать полученные знания; овладение основами исследовательской деятельности биологической направленности и грамотного оформления полученных результатов; развитие способности некоторые объекты и процессы, происходящие в живой природе. предмета на углубленном уровне позволяет формировать у обучающихся умение анализировать, прогнозировать и оценивать с позиции экологической безопасности последствия деятельности человека в экосистемах.

На базовом и углубленном уровнях изучение предмета «Биология» в части формирования у обучающихся научного мировоззрения, освоения общенаучных методов, освоения практического применения научных знаний основано на межпредметных связях с предметами областей естественных, математических и гуманитарных наук.

Программа предполагает практическое освоение навыков учебноисследовательской деятельности. В программе содержится перечень рекомендованных лабораторных и практических работ.

Базовый уровень

Биология как комплекс наук о живой природе

Биология как комплексная наука, методы научного познания, используемые в биологии. Современные направления биологии. Междисциплинарные области науки, взаимодействие биологии другими дисциплинами для решения исследовательских и практических биологии в формировании современной научной картины мира, практическое значение биологических знаний.

Гипотезы и теории, их роль в формировании современной естественнонаучной картины мира. Методы научного познания органического мира. Экспериментальные методы в биологии, значение статистической обработки данных.

Структурные и функциональные основы жизни

Молекулярные основы жизни. Неорганические вещества, их значение. Органические вещества (углеводы, липиды, белки, нуклеиновые кислоты, АТФ) и их значение. Биополимеры. *Другие органические вещества клетки*.

Цитология, актуальные методы цитологии. Роль клеточной теории в становлении современной естественнонаучной картины Клеточная мира. теория в свете современных данных о строении и функциях клетки. Теория симбиогенеза. Строение функции хромосом. Значение цитоскелета И функционировании клеток. Цитологические и молекулярные особенности клеток прокариот и эукариот.

Вирусы – неклеточная форма жизни, меры профилактики вирусных заболеваний.

Клеточный метаболизм. Пластический обмен. Фотосинтез, хемосинтез. Биосинтез белка. Энергетический обмен. Хранение, передача и реализация наследственной информации в клетке. Реакции матричного синтеза. Генетический код. Ген, геном. Геномика. Генная инженерия.

Клеточный цикл: интерфаза и деление. Митоз и мейоз, их значение.

Соматические и половые клетки. Регуляция деления клеток, нарушения регуляции как причина заболеваний. Стволовые клетки. Применение стволовых клеток в терапии. Дифференцировка клеток. Злокачественная трансформация, раковые заболевания.

Организм

Организм – единое целое.

Жизнедеятельность организма. Регуляция функций организма, гомеостаз.

Сравнение бесполого и полового размножения. Способы размножения у растений и животных. Индивидуальное развитие организма (онтогенез). Причины нарушений развития. Репродуктивное здоровье человека; последствия влияния алкоголя, никотина, наркотических веществ на эмбриональное развитие человека. Жизненные циклы разных групп организмов.

Генетика, методы генетики. Генетическая терминология и символика. Законы наследственности Г. Менделя. Хромосомная теория наследственности. Определение пола. Сцепленное с полом наследование.

Генетика человека. Наследственные заболевания человека и их предупреждение. Этические аспекты в области медицинской генетики.

Генотип и среда. Ненаследственная изменчивость. Наследственная изменчивость. Мутагены, их влияние на здоровье человека. Доместикация и селекция. Методы селекции. Биотехнология, ее направления и перспективы развития. *Биобезопасность*.

Теория эволюции

Развитие эволюционных идей, эволюционная теория Ч. Дарвина. Синтетическая теория эволюции. Свидетельства эволюции живой природы. Микроэволюция и макроэволюция. Вид, его критерии. Популяция – элементарная единица эволюции. Движущие силы эволюции, их влияние на генофонд популяции. Направления эволюции.

Многообразие организмов как результат эволюции. Принципы классификации, систематика. Кладистика и молекулярная филогенетика.

Развитие жизни на Земле

Гипотезы происхождения жизни на Земле. Основные этапы эволюции органического мира на Земле.

Современные представления о происхождении человека. Эволюция человека (антропогенез). Движущие силы антропогенеза. Расы человека, их происхождение и единство.

Организмы и окружающая среда

Приспособления организмов к действию экологических факторов.

Биогеоценоз. Экосистема. Разнообразие экосистем. Взаимоотношения популяций разных видов в экосистеме. Круговорот веществ и поток энергии в экосистеме. Устойчивость и динамика экосистем. Последствия влияния деятельности человека на экосистемы. Сохранение биоразнообразия как основа устойчивости экосистемы.

Структура биосферы. Закономерности существования биосферы. Круговороты веществ в биосфере.

Глобальные антропогенные изменения в биосфере. Проблемы устойчивого развития.

Перспективы развития биологических наук.

Примерный перечень лабораторных и практических работ (на выбор учителя):

Техника микроскопирования.

Изучение клеток растений и животных под микроскопом на готовых микропрепаратах и их описание.

Приготовление и описание микропрепаратов клеток растений, грибов, бактерий.

Изучение плазмолиза и деплазмолиза в клетках кожицы лука.

Изучение ферментативного расщепления пероксида водорода в растительных и животных клетках.

Обнаружение белков, углеводов, липидов с помощью качественных реакций. Выделение ДНК.

Изучение каталитической активности ферментов (на примере амилазы или каталазы).

Наблюдение митоза в клетках кончика корешка лука на готовых микропрепаратах.

Изучение хромосом на готовых микропрепаратах. Изучение стадий мейоза на готовых микропрепаратах.

Изучение строения половых клеток на готовых микропрепаратах. Решение элементарных задач по молекулярной биологии.

Выявление признаков сходства зародышей человека других позвоночных животных как доказательство их родства.

Составление элементарных схем скрещивания. Решение генетических задач.

Изучение результатов моногибридного и дигибридного скрещивания у дрозофилы.

Составление и анализ родословных человека.

Изучение изменчивости, построение вариационного ряда и вариационной кривой.

Описание фенотипа.

Сравнение видов по морфологическому критерию.

Описание приспособленности организма и ее относительного характера.

Выявление приспособлений организмов к влиянию различных экологических факторов.

Изучение экологических адаптаций человека. Изучение и описание экосистем своей местности.

Моделирование структур и процессов, происходящих в экосистемах. Оценка антропогенных изменений в природе.

Биология (базовый уровень).

По учебному плану Школы предмет «Биология» на уровне среднего общего образования (при изучении предмета на базовом уровне) изучается в объёме 68 часов.

Распределение часов, предназначенных на изучение курса биологии в 10-11 классах, осуществляется в соответствии с федеральным государственным образовательным стандартом:

10 класс: 68 часов (по 1 часу в неделю), 11 класс: 68 часов (по 1 часу в неделю).

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ

Личностные результаты:

- Знание основных принципов и правил отношения к живой природе, основ здорового образа жизни и здоровьесберегающих технологий; эстетического отношения к живым объектам; осознанное, уважительное отношение к живой природе.
- Сформированность познавательных интересов и мотивов, направленных на изучение живой природы, интеллектуальных умений (доказывать, строить рассуждения, анализировать, сравнивать, делать выводы и др.);
- Готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию; готовность и способность осознанному выбору и построению дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений, с учетом устойчивых познавательных интересов.
- Развитое моральное сознание и компетентность в решении моральных проблем на основе личностного выбора, формирование нравственных чувств и нравственного поведения, осознанного и ответственного отношения к собственным поступкам (способность к нравственному самосовершенствованию; готовность на их основе к сознательному самоограничению в поступках, поведении, расточительном потребительстве).
- Сформированность ответственного отношения к учению; уважительного отношения к труду, наличие опыта участия в социально значимом труде. Осознание значения

семьи в жизни человека и общества, принятие ценности семейной жизни, уважительное и заботливое отношение к членам своей семьи.

- Сформированность целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики, учитывающего социальное, культурное, языковое, духовное многообразие современного мира.
- Осознанное, уважительное и доброжелательное отношение к другому человеку, его мнению, мировоззрению, культуре, языку, вере, гражданской позиции. Готовность и способность вести диалог с другими людьми и достигать в нем взаимопонимания. Освоенность социальных норм, правил поведения, ролей и форм социальной жизни в группах и сообществах.
- Сформированность ценности здорового и безопасного образа жизни; интериоризация правил индивидуального и коллективного безопасного поведения в чрезвычайных ситуациях, угрожающих жизни и здоровью людей, правил поведения на транспорте и на дорогах.
- Сформированность основ экологической культуры, соответствующей современному уровню экологического мышления, наличие опыта экологически ориентированной рефлексивно-оценочной и практической деятельности в жизненных ситуациях (готовность к исследованию природы, к занятиям сельскохозяйственным трудом, к художественно-эстетическому отражению природы, к занятиям туризмом, в том числе экотуризмом, к осуществлению природоохранной деятельности).

Метапредметные результаты, включают освоенные обучающимися межпредметные понятия и универсальные учебные действия (регулятивные, познавательные, коммуникативные).

Регулятивные УУД

- 1. Умение самостоятельно определять цели обучения, ставить и формулировать новые задачи в учебе и познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности. Обучающийся сможет:
- анализировать существующие и планировать будущие образовательные результаты;
- идентифицировать собственные проблемы и определять главную проблему;
- выдвигать версии решения проблемы, формулировать гипотезы, предвосхищать конечный результат;
- ставить цель деятельности на основе определенной проблемы и существующих возможностей;
- формулировать учебные задачи как шаги достижения поставленной цели деятельности;
- обосновывать целевые ориентиры и приоритеты ссылками на ценности, указывая и обосновывая логическую последовательность шагов.
- 2. Умение самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач. Обучающийся сможет:
- определять необходимые действие(я) в соответствии с учебной и познавательной задачей и составлять алгоритм их выполнения;
- обосновывать и осуществлять выбор наиболее эффективных способов решения учебных и познавательных задач;

- определять/находить, в том числе из предложенных вариантов, условия для выполнения учебной и познавательной задачи;
- выстраивать жизненные планы на краткосрочное будущее (заявлять целевые ориентиры, ставить адекватные им задачи и предлагать действия, указывая и обосновывая логическую последовательность шагов);
- выбирать из предложенных вариантов и самостоятельно искать средства/ресурсы для решения задачи/достижения цели;
- составлять план решения проблемы (выполнения проекта, проведения исследования);
- определять потенциальные затруднения при решении учебной и познавательной задачи и находить средства для их устранения;
- описывать свой опыт, оформляя его для передачи другим людям в виде технологии решения практических задач определенного класса;
- планировать и корректировать свою индивидуальную образовательную траекторию.
- 3. Умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией. Обучающийся сможет:
- определять совместно с педагогом и сверстниками критерии планируемых результатов и критерии оценки своей учебной деятельности;
- систематизировать (в том числе выбирать приоритетные) критерии планируемых результатов и оценки своей деятельности;
- отбирать инструменты для оценивания своей деятельности, осуществлять самоконтроль своей деятельности в рамках предложенных условий и требований;
- оценивать свою деятельность, аргументируя причины достижения или отсутствия планируемого результата;
- находить достаточные средства для выполнения учебных действий в изменяющейся ситуации и/или при отсутствии планируемого результата;
- работая по своему плану, вносить коррективы в текущую деятельность на основе анализа изменений ситуации для получения запланированных характеристик продукта/результата;
- устанавливать связь между полученными характеристиками продукта и характеристиками процесса деятельности и по завершении деятельности предлагать изменение характеристик процесса для получения улучшенных характеристик продукта;
- сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно.
- 4. Умение оценивать правильность выполнения учебной задачи, собственные возможности ее решения. Обучающийся сможет:
- определять критерии правильности (корректности) выполнения учебной задачи;
- анализировать и обосновывать применение соответствующего инструментария для выполнения учебной задачи;
- свободно пользоваться выработанными критериями оценки и самооценки, исходя из цели и имеющихся средств, различая результат и способы действий;

- оценивать продукт своей деятельности по заданным и/или самостоятельно определенным критериям в соответствии с целью деятельности;
- обосновывать достижимость цели выбранным способом на основе оценки своих внутренних ресурсов и доступных внешних ресурсов;
- фиксировать и анализировать динамику собственных образовательных результатов.
- 5. Владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной. Обучающийся сможет:
- наблюдать и анализировать собственную учебную и познавательную деятельность и деятельность других обучающихся в процессе взаимопроверки;
- соотносить реальные и планируемые результаты индивидуальной образовательной деятельности и делать выводы;
- принимать решение в учебной ситуации и нести за него ответственность;
- самостоятельно определять причины своего успеха или неуспеха и находить способы выхода из ситуации неуспеха;
- ретроспективно определять, какие действия по решению учебной задачи или параметры этих действий привели к получению имеющегося продукта учебной деятельности;
- демонстрировать приемы регуляции психофизиологических/ эмоциональных состояний для достижения эффекта успокоения (устранения эмоциональной напряженности), эффекта восстановления (ослабления проявлений утомления), эффекта активизации (повышения психофизиологической реактивности).

Познавательные УУД

- 6. Умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное, по аналогии) и делать выводы. Обучающийся сможет:
- подбирать слова, соподчиненные ключевому слову, определяющие его признаки и свойства;
- выстраивать логическую цепочку, состоящую из ключевого слова и соподчиненных ему слов;
- выделять общий признак двух или нескольких предметов или явлений и объяснять их сходство;
- объединять предметы и явления в группы по определенным признакам, сравнивать, классифицировать и обобщать факты и явления;
- выделять явление из общего ряда других явлений;
- определять обстоятельства, которые предшествовали возникновению связи между явлениями, из этих обстоятельств выделять определяющие, способные быть причиной данного явления, выявлять причины и следствия явлений;
- строить рассуждение от общих закономерностей к частным явлениям и от частных явлений к общим закономерностям;
- строить рассуждение на основе сравнения предметов и явлений, выделяя при этом общие признаки;
- излагать полученную информацию, интерпретируя ее в контексте решаемой

задачи;

- самостоятельно указывать на информацию, нуждающуюся в проверке, предлагать и применять способ проверки достоверности информации;
- вербализовать эмоциональное впечатление, оказанное на него источником;
- объяснять явления, процессы, связи и отношения, выявляемые в ходе познавательной и исследовательской деятельности (приводить объяснение с изменением формы представления; объяснять, детализируя или обобщая; объяснять с заданной точки зрения);
- выявлять и называть причины события, явления, в том числе возможные/наиболее вероятные причины, возможные последствия заданной причины, самостоятельно осуществляя причинно-следственный анализ;
- делать вывод на основе критического анализа разных точек зрения, подтверждать вывод собственной аргументацией или самостоятельно полученными данными.
- 7. Умение создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач. Обучающийся сможет:
- обозначать символом и знаком предмет и/или явление;
- определять логические связи между предметами и/или явлениями, обозначать данные логические связи с помощью знаков в схеме;
- создавать абстрактный или реальный образ предмета и/или явления;
- строить модель/схему на основе условий задачи и/или способа ее решения;
- создавать вербальные, вещественные и информационные модели с выделением существенных характеристик объекта для определения способа решения задачи в соответствии с ситуацией;
- преобразовывать модели с целью выявления общих законов, определяющих данную предметную область;
- переводить сложную по составу (многоаспектную) информацию из графического или формализованного (символьного) представления в текстовое, и наоборот;
- строить схему, алгоритм действия, исправлять или восстанавливать неизвестный ранее алгоритм на основе имеющегося знания об объекте, к которому применяется алгоритм;
- строить доказательство: прямое, косвенное, от противного;
- анализировать/рефлексировать опыт разработки и реализации учебного проекта, исследования (теоретического, эмпирического) на основе предложенной проблемной ситуации, поставленной цели и/или заданных критериев оценки продукта/результата.
- 8. Смысловое чтение. Обучающийся сможет:
- находить в тексте требуемую информацию (в соответствии с целями своей деятельности);
- ориентироваться в содержании текста, понимать целостный смысл текста, структурировать текст;
- устанавливать взаимосвязь описанных в тексте событий, явлений, процессов;
- резюмировать главную идею текста;
- преобразовывать текст, «переводя» его в другую модальность, интерпретировать текст (художественный и нехудожественный учебный, научно-популярный, информационный, текст non-fiction);
- критически оценивать содержание и форму текста.

- 9. Формирование и развитие экологического мышления, умение применять его в познавательной, коммуникативной, социальной практике и профессиональной ориентации. Обучающийся сможет:
- определять свое отношение к природной среде;
- анализировать влияние экологических факторов на среду обитания живых организмов;
- проводить причинный и вероятностный анализ экологических ситуаций;
- прогнозировать изменения ситуации при смене действия одного фактора на действие другого фактора;
- распространять экологические знания и участвовать в практических делах по защите окружающей среды;
- выражать свое отношение к природе через рисунки, сочинения, модели, проектные работы.
- 10. Развитие мотивации к овладению культурой активного использования словарей и других поисковых систем. Обучающийся сможет:
- определять необходимые ключевые поисковые слова и запросы;
- осуществлять взаимодействие с электронными поисковыми системами, словарями;
- формировать множественную выборку из поисковых источников для объективизации результатов поиска;
- соотносить полученные результаты поиска со своей деятельностью.

Коммуникативные УУД

- 11. Умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов; формулировать, аргументировать и отстаивать свое мнение. Обучающийся сможет:
- определять возможные роли в совместной деятельности;
- играть определенную роль в совместной деятельности;
- принимать позицию собеседника, понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;
- определять свои действия и действия партнера, которые способствовали или препятствовали продуктивной коммуникации;
- строить позитивные отношения в процессе учебной и познавательной деятельности;
- корректно и аргументированно отстаивать свою точку зрения, в дискуссии уметь выдвигать контраргументы, перефразировать свою мысль (владение механизмом эквивалентных замен);
- критически относиться к собственному мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;
- предлагать альтернативное решение в конфликтной ситуации;
- выделять общую точку зрения в дискуссии;
- договариваться о правилах и вопросах для обсуждения в соответствии с поставленной перед группой задачей;
- организовывать учебное взаимодействие в группе (определять общие цели, распределять роли, договариваться друг с другом и т. д.);

- устранять в рамках диалога разрывы в коммуникации, обусловленные непониманием/неприятием со стороны собеседника задачи, формы или содержания диалога.
- 12. Умение осознанно использовать речевые средства в соответствии с задачей коммуникации для выражения своих чувств, мыслей и потребностей для планирования и регуляции своей деятельности; владение устной и письменной речью, монологической контекстной речью. Обучающийся сможет:
- определять задачу коммуникации и в соответствии с ней отбирать речевые средства;
- отбирать и использовать речевые средства в процессе коммуникации с другими людьми (диалог в паре, в малой группе и т. д.);
- представлять в устной или письменной форме развернутый план собственной деятельности;
- соблюдать нормы публичной речи, регламент в монологе и дискуссии в соответствии с коммуникативной задачей;
- высказывать и обосновывать мнение (суждение) и запрашивать мнение партнера в рамках диалога;
- принимать решение в ходе диалога и согласовывать его с собеседником;
- создавать письменные «клишированные» и оригинальные тексты с использованием необходимых речевых средств;
- использовать вербальные средства (средства логической связи) для выделения смысловых блоков своего выступления;
- использовать невербальные средства или наглядные материалы, подготовленные/отобранные под руководством учителя;
- делать оценочный вывод о достижении цели коммуникации непосредственно после завершения коммуникативного контакта и обосновывать его.
- 13. Формирование и развитие компетентности в области использования информационно-коммуникационных технологий (далее ИКТ). Обучающийся сможет:
- целенаправленно искать и использовать информационные ресурсы, необходимые для решения учебных и практических задач с помощью средств ИКТ;
- выбирать, строить и использовать адекватную информационную модель для передачи своих мыслей средствами естественных и формальных языков в соответствии с условиями коммуникации;
- выделять информационный аспект задачи, оперировать данными, использовать модель решения задачи;
- использовать компьютерные технологии (включая выбор адекватных задаче инструментальных программно-аппаратных средств и сервисов) для решения информационных и коммуникационных учебных задач, в том числе: вычисление, написание писем, сочинений, докладов, рефератов, создание презентаций и др.;
- использовать информацию с учетом этических и правовых норм;
- создавать информационные ресурсы разного типа и для разных аудиторий, соблюдать информационную гигиену и правила информационной безопасности.

Предметные результаты освоения выпускниками основной школы программы по биологии.

Выпускник научится пользоваться научными методами для распознания биологических проблем; давать научное объяснение биологическим фактам, процессам, явлениям, закономерностям, их роли в жизни организмов и человека; проводить наблюдения за живыми объектами, собственным организмом; описывать биологические объекты, процессы и явления; ставить несложные биологические эксперименты и интерпретировать их результаты.

Выпускник **овладеет** системой биологических знаний — понятиями, закономерностями, законами, теориями, имеющими важное общеобразовательное и познавательное значение; сведениями по истории становления биологии как науки.

Выпускник освоит общие приемы: оказания первой помощи; рациональной организации труда и отдыха; выращивания и размножения культурных растений и домашних животных, ухода за ними; проведения наблюдений за состоянием собственного организма; правила работы в кабинете биологии, с биологическими приборами и инструментами.

Выпускник **приобретет** навыки использования научно-популярной литературы по биологии, справочных материалов (на бумажных и электронных носителях), ресурсов Интернета при выполнении учебных задач.

Выпускник получит возможность научиться:

- осознанно использовать знания основных правил поведения в природе и основ здорового образа жизни в быту;
- выбирать целевые и смысловые установки в своих действиях и поступках по отношению к живой природе, здоровью своему и окружающих;
- ориентироваться в системе познавательных ценностей воспринимать информацию биологического содержания в научно-популярной литературе, средствах массовой информации и Интернет-ресурсах, критически оценивать полученную информацию, анализируя ее содержание и данные об источнике информации;
- создавать собственные письменные и устные сообщения о биологических явлениях и процессах на основе нескольких источников информации, сопровождать выступление презентацией, учитывая особенности аудитории сверстников.

Общая биология (10 – 11 классы)

Выпускник научится:

- оценивать роль биологических открытий и современных исследований в развитии науки и в практической деятельности людей;
- оценивать роль биологии в формировании современной научной картины мира, прогнозировать перспективы развития биологии;
- устанавливать и характеризовать связь основополагающих биологических понятий (клетка, организм, вид, экосистема, биосфера) с основополагающими понятиями других естественных наук;
- обосновывать систему взглядов на живую природу и место в ней человека, применяя биологические теории, учения, законы, закономерности, понимать границы их применимости;
- проводить учебно-исследовательскую деятельность по биологии: выдвигать гипотезы, планировать работу, отбирать и преобразовывать необходимую информацию, проводить эксперименты, интерпретировать результаты, делать

выводы на основе полученных результатов;

- выявлять и обосновывать существенные особенности разных уровней организации жизни;
- устанавливать связь строения и функций основных биологических макромолекул, их роль в процессах клеточного метаболизма;
- сравнивать фазы деления клетки;
- решать задачи на определение и сравнение количества генетического материала (хромосом и ДНК) в клетках многоклеточных организмов в разных фазах клеточного цикла;
- выявлять существенные признаки строения клеток организмов разных царств живой природы, устанавливать взаимосвязь строения и функций частей и органоидов клетки;
- обосновывать взаимосвязь пластического и энергетического обменов; сравнивать процессы пластического и энергетического обменов, происходящих в клетках живых организмов;
- раскрывать причины наследственных заболеваний, аргументировать необходимость мер предупреждения таких заболеваний;
- сравнивать разные способы размножения организмов;
- характеризовать основные этапы онтогенеза организмов;
- выявлять причины и существенные признаки модификационной и мутационной изменчивости;
- обосновывать роль изменчивости в естественном и искусственном отборе;
- обосновывать значение разных методов селекции в создании сортов растений, пород животных и штаммов микроорганизмов;
- обосновывать причины изменяемости и многообразия видов, применяя синтетическую теорию эволюции;
- характеризовать популяцию как единицу эволюции, вид как систематическую категорию и как результат эволюции;
- устанавливать связь структуры и свойств экосистемы;
- составлять схемы переноса веществ и энергии в экосистеме (сети питания), прогнозировать их изменения в зависимости от изменения факторов среды;
- аргументировать собственную позицию по отношению к экологическим проблемам и поведению в природной среде;
- обосновывать необходимость устойчивого развития как условия сохранения биосферы;
- оценивать практическое и этическое значение современных исследований в биологии, медицине, экологии, биотехнологии; обосновывать собственную оценку;
- выявлять в тексте биологического содержания проблему и аргументированно ее объяснять;
- представлять биологическую информацию в виде текста, таблицы, схемы, графика, диаграммы и делать выводы на основании представленных данных; преобразовывать график, таблицу, диаграмму, схему в текст биологического содержания.

Выпускник получит возможность научиться:

• организовывать и проводить индивидуальную исследовательскую деятельность по биологии (или разрабатывать индивидуальный проект): выдвигать гипотезы,

планировать работу, отбирать и преобразовывать необходимую информацию, проводить эксперименты, интерпретировать результаты, делать выводы на основе полученных результатов, представлять продукт своих исследований;

- прогнозировать последствия собственных исследований с учетом этических норм и экологических требований;
- выделять существенные особенности жизненных циклов представителей разных отделов растений и типов животных; изображать циклы развития в виде схем;
- анализировать и использовать в решении учебных и исследовательских задач информацию о современных исследованиях в биологии, медицине и экологии;
- аргументировать необходимость синтеза естественнонаучного и социогуманитарного знания в эпоху информационной цивилизации;
- моделировать изменение экосистем под влиянием различных групп факторов окружающей среды;
- выявлять в процессе исследовательской деятельности последствия антропогенного воздействия на экосистемы своего региона, предлагать способы снижения антропогенного воздействия на экосистемы;
- использовать приобретенные компетенции в практической деятельности и повседневной жизни для приобретения опыта деятельности, предшествующей профессиональной, в основе которой лежит биология как учебный предмет.

Содержание и тематическое планирование.

РАЗДЕЛ 1. Биология как наука. Методы научного познания. (4 часа)

Тема 1.1 Краткая история развития биологии. Методы исследования в биологии (2 часа)

Тема 1.2 Сущность жизни и свойства живого. Уровни организации живой материи (2 часа)

РАЗДЕЛ 2. Клетка. (10 часов)

- Тема 2.1 Методы цитологии. Клеточная теория (1 час)
- Тема 2.2 Химический состав клетки (4 часа)
- Тема 2.3 Строение клетки (3 часа)
- Тема 2.4 Реализация наследственной информации в клетке (1 час)
- Тема 2.5 Вирусы (1 час)

РАЗДЕЛ 3 Организм (19 часов)

- Тема 3.1 Организм единое целое. Многообразие живых организмов (1ч)
- Тема 3.2 Обмен веществ и превращение энергии свойство живых организмов (2 часа)
- Тема 3.3 Размножение (4 часа)
- Тема 3.4 Индивидуальное развитие организмов (онтогенез) (2 часа)
- Тема 3.5 Наследственность и изменчивость (7 часов)
- Тема 3.6 Генетика теоретическая основа селекции. Селекция. Биотехнология (3 часа)

ЗАКЛЮЧЕНИЕ (1 час)

2.2.14. Физическая культура

Общей целью образования в области физической культуры является формирование у обучающихся устойчивых мотивов и потребностей в бережном отношении к своему здоровью, целостном развитии физических и психических качеств, творческом использовании средств физической культуры в организации здорового образа жизни. Освоение учебного предмета направлено на приобретение компетентности в физкультурно-оздоровительной и спортивной деятельности, овладение навыками творческого сотрудничества в коллективных формах занятий физическими упражнениями.

Учебный предмет «Физическая культура» должен изучаться на межпредметной основе практически со всеми предметными областями среднего общего образования.

Базовый уровень

В соответствии со структурой двигательной (физкультурной) деятельности программа включает три основных учебных раздела: «Физическая культура и здоровый образ жизни- информационный компонент деятельности, «Формы организации занятий физической культурой» — операциональный компонент деятельности, «Физическое совершенствование» — процессуально- мотивационный компонент деятельности.

Физическая культура и здоровый образ жизни

Современные оздоровительные системы физического воспитания, их роль в формировании здорового образа жизни, сохранении творческой активности и долголетия, предупреждении профессиональных заболеваний и вредных привычек, поддержании репродуктивной функции.

Оздоровительные мероприятия по восстановлению организма и повышению работоспособности: гимнастика при занятиях умственной и физической деятельностью; сеансы аутотренинга, релаксации и самомассажа, банные процедуры.

Система индивидуальных занятий оздоровительной и тренировочной направленности, основы методики их организации и проведения, контроль и оценка эффективности занятий.

Особенности соревновательной деятельности в массовых видах спорта; правила организации и проведения соревнований, обеспечение безопасности, *судейство*.

Формы организации занятий физической культурой

Государственные требования к уровню физической подготовленности населения при выполнении нормативов Всероссийского физкультурно-спортивного комплекса «Готов к труду и обороне» (ГТО).

Современное состояние физической культуры и спорта в России.

Основы законодательства Российской Федерации в области физической культуры, спорта, туризма, охраны здоровья.

Физическое совершенствование

Этот раздел наиболее значительный по объему учебного материала, ориентирован на гармоничное физическое развитие, всестороннюю физическую подготовку и укрепление здоровья школьников. Этот раздел включает несколько

тем: «Физкультурно-оздоровительная деятельность»,

- «Спортивно-оздоровительная деятельность с общеразвивающей направленностью»,
- «Прикладно-ориентированные упражнения» и
- «Упражнения общеразвивающей направленности».

Гимнастика с элементами акробатики

Акробатические упражнения и комбинации. Упражнения и комбинации в равновесии на бревне. Висы и упоры. Упражнения и комбинации на брусьях. Упражнения на перекладине. Ритмическая гимнастика. Упражнения с отягощениями. Полоса препятствий.

Легкая атлетика

Бег на короткие, средние и длинные дистанции. Техника старта и финиширования. Прыжки в длину способом «согнув ноги» и «прогнувшись». Прыжок в высоту способом «перешагивание». Тройной прыжок с места и с разбега. Метание малого мяча в цель и на дальность. Эстафетный бег. Спортивная ходьба. Кросс по пересеченной местности. Легкоатлетические многоборья.

Лыжная подготовка

Освоение техники классических и коньковых лыжных ходов. Подъемы и спуски с гор. Повороты переступанием на месте и в движении. Преодоление препятствий на лыжах. Передвижение с различной скоростью. Игры на лыжах. Распределение сил по дистанции.

Конькобежная подготовка

Скольжение на одном и двух коньках. Бег по прямой и по повороту. Шорттрек. Передвижения спиной вперед. Торможения на льду. Повороты. Игры на льду. Элементы фигурного катания.

Туризм и спортивное ориентирование

Установка палатки. Узлы. Внемасштабные условные обозначения, применяемые на картах для спортивного ориентирования. Передвижение по азимуту. Составление маршрута движения. Ориентирование в заданном направлении, по маркированной трассе и по выбору. Преодоление препятствий. Временные и постоянные поручения в походе. Приготовление пищи в походных условиях. Типы костров. Правила безопасности в походе.

Спортивные игры (баскетбол, волейбол)

Упражнения в ловле и передачах мяча в движении. Ведение мяча с изменением скорости и направления. Бросок по кольцу в движении. Броски в прыжке. Взаимодействия игроков в защите и нападении. Передачи мяча сверху и снизу. Нижняя и верхняя боковая подача. Прием мяча. Нападающий удар. Блокирование.

Физкультурно-оздоровительная деятельность

Оздоровительные системы физического воспитания.

Современные фитнес-программы, направленные на достижение и поддержание оптимального качества жизни, решение задач формирования жизненно необходимых и спортивно ориентированных двигательных навыков и умений.

Индивидуально ориентированные здоровьесберегающие технологии: гимнастика при умственной и физической деятельности; комплексы упражнений

адаптивной физической культуры; оздоровительная ходьба и бег.

Прикладно-ориентированные упражнения

Физические упражнения, необходимые в различных профессиях. Развитие жизненно важных навыков и умений разными способами в постоянно меняющихся условиях.

Упражнения общеразвивающей направленности

Физические упражнения для развития основных физических качеств средствами различных видов спорта.

Упражнения для развития силы. Упражнения для развития ловкости. Упражнения для развития выносливости. Упражнения для развития гибкости. Упражнения для развития быстроты. Динамика нагрузок и преемственность в развитии физических качеств исходя из половозрастных особенностей учащихся, степени усвоения ими упражнений, условий проведения уроков, наличия спортивного инвентаря и оборудования.

Физическая культура (базовый уровень).

По учебному плану Школы предмет «Физическая культура» на уровне среднего общего образования изучается на базовом уровне в объёме 136 часов.

Распределение часов, предназначенных на изучение физической культуры в 10-11 классах, осуществляется в соответствии с федеральным государственным образовательным стандартом:

10 класс: 68 часов (2 часа в неделю), 11 класс: 68 часов (2 часа в неделю).

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ

Предметные результаты:

- характеризуют опыт учащихся в творческой двигательной деятельности, который приобретается и закрепляется в процессе освоения учебного предмета «физическая культура». Приобретаемый опыт проявляется в знаниях и способах двигательной деятельности, умениях творчески их применять при решении практических задач, связанных с организацией и проведением самостоятельных занятий физической культурой:
- представление физической культуры как средства укрепления здоровья, физического развития;
- бережное обращение с инвентарем и оборудованием, соблюдение техники безопасности;
- взаимодействие со сверстниками по правилам проведения подвижных спортивных игр и соревнований;
- выполнение жизненно важных двигательных навыков и умений различными способами в различных условиях;
- взаимодействие со сверстниками по правилам проведения подвижных и спортивных игр;

- объяснение в доступной форме правил (техники) выполнения двигательных действий, анализ и поиск ошибок, их исправление;
 - разработка и проведение общеразвивающих упражнений.

Выпускник научится:

- рассматривать физическую культуру как явление культуры, выделять исторические этапы ее развития, характеризовать основные направления и формы ее организации в современном обществе;
- характеризовать содержательные основы здорового образа жизни, раскрывать его взаимосвязь со здоровьем, гармоничным физическим развитием и физической подготовленностью, формированием качеств личности и профилактикой вредных привычек;
- раскрывать базовые понятия и термины физической культуры, применять их в процессе совместных занятий физическими упражнениями со своими сверстниками, излагать с их помощью особенности техники двигательных действий и физических упражнений, развития физических качеств;
- разрабатывать содержание самостоятельных занятий с физическими упражнениями, определять их направленность и формулировать задачи, рационально планировать режим дня и учебной недели;
- руководствоваться правилами профилактики травматизма и подготовки мест занятий, правильного выбора обуви и формы одежды в зависимости от времени года и погодных условий;
- руководствоваться правилами оказания первой помощи при травмах и ушибах во время самостоятельных занятий физическими упражнениями; использовать занятия физической культурой, спортивные игры и спортивные соревнования для организации индивидуального отдыха и досуга, укрепления собственного здоровья, повышения уровня физических кондиций;
- составлять комплексы физических упражнений оздоровительной, тренирующей и корригирующей направленности, подбирать индивидуальную нагрузку с учетом функциональных особенностей и возможностей собственного организма;
- классифицировать физические упражнения по их функциональной направленности, планировать их последовательность и дозировку в процессе самостоятельных занятий по укреплению здоровья и развитию физических качеств;
- самостоятельно проводить занятия по обучению двигательным действиям, анализировать особенности их выполнения, выявлять ошибки и своевременно устранять их;
- тестировать показатели физического развития и основных физических качеств, сравнивать их с возрастными стандартами, контролировать особенности их динамики в процессе самостоятельных занятий физической подготовкой;
- выполнять комплексы упражнений по профилактике утомления и перенапряжения организма, повышению его работоспособности в процессе трудовой и учебной деятельности;
- выполнять общеразвивающие упражнения, целенаправленно воздействующие на развитие основных физических качеств (силы, быстроты, выносливости, гибкости и координации движений);

- выполнять акробатические комбинации из числа хорошо освоенных упражнений;
- выполнять гимнастические комбинации на спортивных снарядах из числа хорошо освоенных упражнений;
 - выполнять легкоатлетические упражнения в беге и в прыжках (в длину и высоту);
 - выполнять спуски и торможения на лыжах с пологого склона;
- выполнять основные технические действия и приемы игры в волейбол и баскетбол в условиях учебной и игровой деятельности;
- выполнять передвижения на лыжах различными способами, демонстрировать технику последовательного чередования их в процессе прохождения тренировочных дистанций;
- выполнять тестовые упражнения для оценки уровня индивидуального развития основных физических качеств.

Выпускник получит возможность научиться:

- характеризовать цель возрождения Олимпийских игр и роль Пьера де Кубертена в становлении современного олимпийского движения, объяснять смысл символики и ритуалов Олимпийских игр;
- характеризовать исторические вехи развития отечественного спортивного движения, великих спортсменов, принесших славу российскому спорту;
- определять признаки положительного влияния занятий физической подготовкой на укрепление здоровья, устанавливать связь между развитием физических качеств и основных систем организма;
- вести дневник по физкультурной деятельности, включать в него оформление планов проведения самостоятельных занятий с физическими упражнениями разной функциональной направленности, данные контроля динамики индивидуального физического развития и физической подготовленности;
- проводить занятия физической культурой с использованием оздоровительной ходьбы и бега, лыжных прогулок и туристических походов, обеспечивать их оздоровительную направленность;
- проводить восстановительные мероприятия с использованием банных процедур и сеансов оздоровительного массажа;
- выполнять комплексы упражнений лечебной физической культуры с учетом имеющихся индивидуальных отклонений в показателях здоровья;
- преодолевать естественные и искусственные препятствия с помощью разнообразных способов лазания, прыжков и бега;
 - осуществлять судейство по одному из осваиваемых видов спорта;
- выполнять тестовые нормативы Всероссийского физкультурно-спортивного комплекса «Готов к труду и обороне».

Личностные результаты освоения основной образовательной программы:

- положительное отношение обучающихся к занятиям двигательной (физкультурной) деятельностью, накоплении необходимых знаний, а также в умении использовать ценности физической культуры для удовлетворения индивидуальных интересов и потребностей, достижения личностно значимых результатов в физическом совершенстве:

- активное включение в общение и взаимодействие со сверстниками на принципах уважения и доброжелательности, взаимопомощи и сопереживания;
- проявление положительных качеств личности и управление своими эмоциями в различных, в том числе нестандартных, ситуациях и условиях;
- проявление дисциплинированности, трудолюбия и упорства в достижении поставленных целей;
- оказание бескорыстной помощи сверстникам, нахождение с ними общего языка и общих интересов.

Метапредметные результаты освоения программы:

- характеристика явления, действия или поступков, их объективная оценка на основе освоенных знаний и имеющегося опыта;
- общение и взаимодействие со сверстниками на принципах взаимоуважения и взаимопомощи, дружбы и толерантности;
- обеспечение защиты и сохранности природы во время активного отдыха и занятий физической культурой;
 - видение красоты движений;
 - управление эмоциями при общении со сверстниками, взрослыми;
- технически правильное выполнение двигательных действий, использование их в игровой деятельности;
- обнаружение ошибок при выполнении учебных заданий, поиск способов их исправления.

У обучающихся будут сформированы универсальные учебные действия:

– регулятивные:

- 1. Умение самостоятельно определять цели обучения, ставить и формулировать новые задачи в учебе и познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности. Обучающийся сможет:
 - анализировать существующие и планировать будущие образовательные результаты;
 - идентифицировать собственные проблемы и определять главную проблему;
 - выдвигать версии решения проблемы, формулировать гипотезы, предвосхищать конечный результат;
 - ставить цель деятельности на основе определенной проблемы и существующих возможностей;
 - формулировать учебные задачи как шаги достижения поставленной цели деятельности;
- 2. Умение самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач. Обучающийся сможет:
 - определять необходимые действие(я) в соответствии с учебной и познавательной задачей и составлять алгоритм их выполнения;
 - обосновывать и осуществлять выбор наиболее эффективных способов решения учебных и познавательных задач;

- определять/находить, в том числе из предложенных вариантов, условия для выполнения учебной и познавательной задачи;
- выстраивать жизненные планы на краткосрочное будущее (заявлять целевые ориентиры, ставить адекватные им задачи и предлагать действия, указывая и обосновывая логическую последовательность шагов);
- выбирать из предложенных вариантов и самостоятельно искать средства/ресурсы для решения задачи/достижения цели;
- составлять план решения проблемы (выполнения проекта, проведения исследования);
- определять потенциальные затруднения при решении учебной и познавательной задачи и находить средства для их устранения;
- описывать свой опыт, оформляя его для передачи другим людям в виде технологии решения практических задач определенного класса;
- планировать и корректировать свою индивидуальную образовательную траекторию.
- 3. Умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией. Обучающийся сможет:
 - определять совместно с педагогом и сверстниками критерии планируемых результатов и критерии оценки своей учебной деятельности;
 - систематизировать (в том числе выбирать приоритетные) критерии планируемых результатов и оценки своей деятельности;
 - отбирать инструменты для оценивания своей деятельности, осуществлять самоконтроль своей деятельности в рамках предложенных условий и требований;
 - оценивать свою деятельность, аргументируя причины достижения или отсутствия планируемого результата;
 - находить достаточные средства для выполнения учебных действий в изменяющейся ситуации и/или при отсутствии планируемого результата;
 - работая по своему плану, вносить коррективы в текущую деятельность на основе анализа изменений ситуации для получения запланированных характеристик продукта/результата;
 - устанавливать связь между полученными характеристиками продукта и характеристиками процесса деятельности и по завершении деятельности предлагать изменение характеристик процесса для получения улучшенных характеристик продукта;
 - сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно.
- 4. Умение оценивать правильность выполнения учебной задачи, собственные возможности ее решения. Обучающийся сможет:

- определять критерии правильности (корректности) выполнения учебной задачи;
- анализировать и обосновывать применение соответствующего инструментария для выполнения учебной задачи;
- свободно пользоваться выработанными критериями оценки и самооценки, исходя из цели и имеющихся средств, различая результат и способы действий;
- оценивать продукт своей деятельности по заданным и/или самостоятельно определенным критериям в соответствии с целью деятельности;
- обосновывать достижимость цели выбранным способом на основе оценки своих внутренних ресурсов и доступных внешних ресурсов;
- фиксировать и анализировать динамику собственных образовательных результатов.
- 5. Владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной деятельности. Обучающийся сможет:
 - наблюдать и анализировать собственную учебную и познавательную деятельность и деятельность других обучающихся в процессе взаимопроверки;
 - соотносить реальные и планируемые результаты индивидуальной образовательной деятельности и делать выводы;
 - принимать решение в учебной ситуации и нести за него ответственность;
 - самостоятельно определять причины своего успеха или неуспеха и находить способы выхода из ситуации неуспеха;
 - ретроспективно определять, какие действия по решению учебной задачи или параметры этих действий привели к получению имеющегося продукта учебной деятельности;
 - демонстрировать приемы регуляции психофизиологических/ эмоциональных состояний для достижения эффекта успокоения (устранения эмоциональной напряженности), эффекта восстановления (ослабления проявлений утомления), эффекта активизации (повышения психофизиологической реактивности.

– познавательные:

- 1. Умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное, по аналогии) и делать выводы. Обучающийся сможет:
 - выделять общий признак двух или нескольких предметов или явлений и объяснять их сходство;
 - объединять предметы и явления в группы по определенным признакам, сравнивать, классифицировать и обобщать факты и явления;

- определять обстоятельства, которые предшествовали возникновению связи между явлениями, из этих обстоятельств выделять определяющие, способные быть причиной данного явления, выявлять причины и следствия явлений;
- излагать полученную информацию, интерпретируя ее в контексте решаемой задачи;
- самостоятельно указывать на информацию, нуждающуюся в проверке, предлагать и применять способ проверки достоверности информации;
- объяснять явления, процессы, связи и отношения, выявляемые в ходе познавательной и исследовательской деятельности (приводить объяснение с изменением формы представления; объяснять, детализируя или обобщая; объяснять с заданной точки зрения);
- выявлять и называть причины события, явления, в том числе возможные /наиболее вероятные причины, возможные последствия заданной причины, самостоятельно осуществляя причинно-следственный анализ;
- делать вывод на основе критического анализа разных точек зрения, подтверждать вывод собственной аргументацией или самостоятельно полученными данными.
- 2. Умение создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач. Обучающийся сможет:
 - обозначать символом и знаком предмет и/или явление;
 - определять логические связи между предметами и/или явлениями, обозначать данные логические связи с помощью знаков в схеме;
 - строить модель/схему на основе условий задачи и/или способа ее решения;
 - переводить сложную по составу (многоаспектную) информацию из графического или формализованного (символьного) представления в текстовое, и наоборот;
 - анализировать/рефлексировать опыт разработки и реализации учебного проекта, исследования (теоретического, эмпирического) на основе предложенной проблемной ситуации, поставленной цели и/или заданных критериев оценки продукта/результата.

- коммуникативные:

- 1. Умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов; формулировать, аргументировать и отстаивать свое мнение. Обучающийся сможет:
 - определять возможные роли в совместной деятельности;
 - играть определенную роль в совместной деятельности;
 - принимать позицию собеседника, понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;
 - определять свои действия и действия партнера, которые способствовали или препятствовали продуктивной коммуникации;

- строить позитивные отношения в процессе учебной и познавательной деятельности;
- корректно и аргументированно отстаивать свою точку зрения, в дискуссии уметь выдвигать контраргументы, перефразировать свою мысль (владение механизмом эквивалентных замен);
- критически относиться к собственному мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;
- предлагать альтернативное решение в конфликтной ситуации;
- выделять общую точку зрения в дискуссии;
- договариваться о правилах и вопросах для обсуждения в соответствии с поставленной перед группой задачей;
- организовывать учебное взаимодействие в группе (определять общие цели, распределять роли, договариваться друг с другом и т. д.);
- устранять в рамках диалога разрывы в коммуникации, обусловленные непониманием/неприятием со стороны собеседника задачи, формы или содержания диалога.
- 2. Умение осознанно использовать речевые средства в соответствии с задачей коммуникации для выражения своих чувств, мыслей и потребностей для планирования и регуляции своей деятельности; владение устной и письменной речью, монологической контекстной речью. Обучающийся сможет:
 - отбирать и использовать речевые средства в процессе коммуникации с другими людьми (диалог в паре, в малой группе и т. д.);
 - представлять в устной или письменной форме развернутый план собственной деятельности;
 - принимать решение в ходе диалога и согласовывать его с собеседником;
 - создавать письменные «клишированные» и оригинальные тексты с использованием необходимых речевых средств;
 - использовать невербальные средства или наглядные материалы, подготовленные/отобранные под руководством учителя;
 - делать оценочный вывод о достижении цели коммуникации непосредственно после завершения коммуникативного контакта и обосновывать его.
- 3. Формирование и развитие компетентности в области использования информационно-коммуникационных технологий (далее ИКТ). Обучающийся сможет:
 - целенаправленно искать и использовать информационные ресурсы, необходимые для решения учебных и практических задач с помощью средств ИКТ;
 - использовать компьютерные технологии (включая выбор адекватных задаче инструментальных программно-аппаратных средств и сервисов) для решения информационных и коммуникационных учебных задач, в том числе: вычисление, написание писем, сочинений, докладов, рефератов, создание презентаций и др.;

- использовать информацию с учетом этических и правовых норм;
- создавать информационные ресурсы разного типа и для разных аудиторий, соблюдать информационную гигиену и правила информационной безопасности.

СОДЕРЖАНИЕ

Согласно Концепции развития содержания образования в области физической культуры (2001), основой образования по физической культуре является двигательная (физкультурная) деятельность, которая непосредственно связана с совершенствованием физической природы человека.

В соответствии со структурой двигательной (физкультурной) деятельности программа включает три основных учебных раздела: «Знания о физической культуре» — информационный компонент деятельности, «Способы двигательной (физкультурной) деятельности» — операциональный компонент деятельности, «Физическое совершенствование» — процессуально-мотивационный компонент деятельности.

Раздел «Знания о физической культуре» соответствует основным представлениям о развитии познавательной активности человека и включает такие учебные темы, как «История физической культуры и ее развитие в современном обществе», «Базовые понятия физической культуры» и «Физическая культура человека». Эти темы включают сведения об истории древних и современных Олимпийских игр, основных направлениях развития физической культуры в современном обществе, о формах организации активного отдыха и укрепления здоровья средствами физической культуры.

Раздел «Способы двигательной (физкультурной) деятельности» содержит задания, которые ориентированы на активное включение учащихся в самостоятельные формы занятий физической культурой. Этот раздел соотносится с разделом «Знания о физической культуре» и включает темы «Организация и проведение самостоятельных занятий физической культурой» и «Оценка эффективности занятий физической культурой».

Раздел «Физическое совершенствование», наиболее значительный по объему учебного материала, ориентирован на гармоничное физическое развитие, всестороннюю физическую подготовку и укрепление здоровья школьников. Этот раздел включает несколько тем: «Физкультурно-оздоровительная деятельность», «Спортивно-оздоровительная деятельность с общеразвивающей направленностью», «Прикладно-ориентированные упражнения» и «Упражнения общеразвивающей направленности».

Тема «Физкультурно-оздоровительная деятельность» ориентирована на решение задач по укреплению здоровья учащихся. Здесь рассказывается об оздоровительных формах занятий в режиме учебного дня и учебной недели, даются комплексы упражнений из современных оздоровительных систем физического воспитания, способствующие коррекции осанки и телосложения, оптимальному развитию систем дыхания и кровообращения, а также упражнения адаптивной физической культуры, которые адресуются, в первую очередь, школьникам,

имеющим отклонения в состоянии здоровья, индивидуальные комплексы адаптивной (лечебной) и корригирующей физической культуры.

Тема «Спортивно-оздоровительная деятельность с общеразвивающей направленностью» ориентирована на физическое совершенствование учащихся и включает средства общей физической и технической подготовки. В качестве таких средств предлагаются физические упражнения и двигательные действия из базовых видов спорта: гимнастики, легкой атлетики, спортивных игр, лыжных гонок.

Гимнастика с элементами акробатики. Акробатические упражнения и комбинации. Упражнения и комбинации в равновесии на бревне. Висы и упоры. Упражнения и комбинации на параллельных и разновысоких брусьях. Упражнения на перекладине. Ритмическая гимнастика. Упражнения с отягощениями. Полоса препятствий.

Легкая атлетика. Бег на короткие, средние и длинные дистанции. Техника финиширования. Прыжки в длину способом «согнув «прогнувшись». Прыжок в высоту способом «перешагивание». Тройной прыжок с места и с разбега. Метание малого мяча в цель и на дальность. Эстафетный бег. Спортивная ходьба. Кросс ПО пересеченной местности. Легкоатлетические многоборья.

Пыжная подготовка. Освоение техники классических и коньковых лыжных ходов. Подъемы и спуски с гор. Повороты переступанием на месте и в движении. Преодоление препятствий на лыжах. Передвижение с различной скоростью. Игры на лыжах. Распределение сил по дистанции.

Спортивные игры (баскетбол, волейбол). Упражнения в ловле и передачах мяча в движении. Ведение мяча с изменением скорости и направления. Бросок по кольцу в движении. Броски в прыжке. Взаимодействия игроков в защите и нападении. Передачи мяча сверху и снизу. Нижняя и верхняя боковая подача. Прием мяча. Нападающий удар. Блокирование.

Тема «Прикладно-ориентированные упражнения» поможет школьникам подготовиться ко взрослой жизни, освоить различные профессии путем усвоения жизненно важных навыков и умений разными способами в постоянно меняющихся условиях жизни.

Тема «Упражнения общеразвивающей направленности» предназначена для организации целенаправленной физической подготовки учащихся и включает физические упражнения на развитие основных физических качеств. Эта тема носит лишь относительно самостоятельный характер, поскольку ее содержание должно входить в содержание других тем раздела «Физическое совершенствование». В связи с этим предлагаемые упражнения распределены по разделам базовых видов спорта и сгруппированы по признаку направленности на развитие соответствующего физического качества: силы, быстроты, выносливости и т.д. Такое изложение материала позволяет учителю отбирать физические упражнения и объединять их в планировать комплексы, динамику нагрузок преемственность в развитии физических качеств исходя из половозрастных особенностей учащихся, степени усвоения ими упражнений, условий проведения уроков, наличия спортивного инвентаря и оборудования.

Гимнастика с элементами акробатики. Упражнения для развития гибкости,

координации движений, силы.

Легкая атлетика. Упражнения для развития быстроты, выносливости, силы, координации движений.

Лыжная подготовка. Упражнения для развития выносливости и координации движений.

Подвижные и спортивные игры. Упражнения для развития быстроты, скоростно-силовых качеств, координации движений.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

10 класс

Nº	Наименование темы	Количество часов
1	Легкая атлетика	18
2	Гимнастика с элементами акробатики	8
3	Спортивные игры (баскетбол)	14
4	Лыжная подготовка	16
5	Спортивные игры (волейбол)	12

11 класс

Nº	Наименование темы	Количество часов
1	Легкая атлетика	18
2	Гимнастика с элементами акробатики	8
3	Спортивные игры (баскетбол)	14
4	Лыжная подготовка	16
5	Спортивные игры (волейбол)	12

2.2.15. Основы безопасности жизнедеятельности

Опасные и чрезвычайные ситуации, усиление глобальной конкуренции и межгосударственного и напряженности в различных областях взаимодействия требуют межрегионального формирования у обучающихся области компетенции личной безопасности в условиях опасных и чрезвычайных ситуаций социально сложного и технически насыщенного окружающего мира, а также готовности к выполнению гражданского долга по защите Отечества.

Целью изучения и освоения программы учебного предмета «Основы безопасности жизнедеятельности» является формирование у выпускника культуры безопасности жизнедеятельности в современном мире, получение им начальных знаний в области обороны и начальная индивидуальная подготовка по основам

военной службы в соответствии с требованиями, предъявляемыми ФГОС СОО.

Учебный предмет «Основы безопасности жизнедеятельности» является изучения обязательным для на уровне среднего общего образования, осваивается на базовом уровне и является одной из составляющих предметной культура, области «Физическая экология И основы безопасности жизнедеятельности».

Программа определяет содержание по учебному предмету «Основы безопасности жизнедеятельности» в форме и объеме, которые соответствуют возрастным особенностям обучающихся и учитывают возможность освоения ими теоретической и практической деятельности, что является важнейшим компонентом развивающего обучения. Содержание представлено в девяти модулях.

Модуль «Основы комплексной безопасности» раскрывает вопросы, связанные с экологической безопасностью и охраной окружающей среды, безопасностью на транспорте, явными и скрытыми опасностями в современных молодежных хобби подростков.

Модуль «Защита населения Российской Федерации от опасных и чрезвычайных ситуаций» раскрывает вопросы, связанные с защитой населения от опасных и чрезвычайных ситуаций природного, техногенного и социального характера.

Модуль «Основы противодействия экстремизму, терроризму и наркотизму в Российской Федерации» раскрывает вопросы, связанные с противодействием экстремизму, терроризму и наркотизму.

Модуль «Основы здорового образа жизни» раскрывает основы здорового образа жизни.

Модуль «Основы медицинских знаний и оказание первой помощи» раскрывает вопросы, связанные с оказанием первой помощи, санитарно- эпидемиологическим благополучием населения и профилактикой инфекционных заболеваний.

Модуль «Основы обороны государства» раскрывает вопросы, связанные с состоянием и тенденциями развития современного мира и России, а также факторы и источники угроз и основы обороны РФ.

Модуль «Правовые основы военной службы» включает вопросы обеспечения прав, определения и соблюдения обязанностей гражданина до призыва, во время призыва и прохождения военной службы, увольнения с военной службы и пребывания в запасе.

Модуль «Элементы начальной военной подготовки» раскрывает вопросы строевой, огневой, тактической подготовки.

Модуль «Военно-профессиональная деятельность» раскрывает вопросы военно-профессиональной деятельности гражданина.

«Основы безопасности жизнедеятельности» как учебный предмет обеспечивает:

- сформированность экологического мышления, навыков здорового, безопасного и экологически целесообразного образа жизни, понимание рисков и угроз современного мира;
- знание правил и владение навыками поведения в опасных и чрезвычайных ситуациях природного, техногенного и социального характера;

- владение умением сохранять эмоциональную устойчивость в опасных и чрезвычайных ситуациях, а также навыками оказания первой помощи пострадавшим;
- умение действовать индивидуально и в группе в опасных и чрезвычайных ситуациях;
- формирование морально-психологических и физических качеств гражданина, необходимых для прохождения военной службы;
- воспитание патриотизма, уважения к историческому и культурному прошлому России и ее Вооруженным Силам;
- изучение гражданами основных положений законодательства Российской Федерации в области обороны государства, воинской обязанности и военной службы;
 - приобретение навыков в области гражданской обороны;
- изучение основ безопасности военной службы, основ огневой, индивидуальной тактической и строевой подготовки, сохранения здоровья в период прохождения военной службы и элементов медицинской подготовки, вопросов радиационной, химической биологической защиты войск и И населения.

Программа учебного предмета «Основы безопасности жизнедеятельности» предполагает получение знаний через практическую деятельность и способствует формированию у обучающихся умений безопасно использовать различное учебное оборудование, в т. ч. других предметных областей, анализировать полученные результаты, представлять и научно аргументировать полученные выводы.

Межпредметная связь учебного предмета «Основы безопасности жизнедеятельности» с такими предметами, как «Физика», «Химия», «Биология», «География», «Информатика», «История», «Обществознание», «Право», «Экология», «Физическая культура» способствует формированию целостного представления об изучаемом объекте, явлении, содействует лучшему усвоению содержания предмета, установлению более прочных связей обучающихся с повседневной жизнью и окружающим миром, усилению развивающей и культурной составляющей программы, а также рациональному использованию учебного времени в рамках выбранного профиля и индивидуальной траектории образования.

Базовый уровень

Основы комплексной безопасности

Экологическая безопасность и охрана окружающей среды. Влияние экологической безопасности на национальную безопасность $P\Phi$. Права, обязанности и ответственность гражданина в области охраны окружающей среды. Организации, отвечающие за защиту прав потребителей и благополучие человека, природопользование и охрану окружающей среды, и порядок обращения в них. Неблагоприятные районы в месте проживания и факторы экориска. Средства индивидуальной защиты. Предназначение и использование экологических знаков.

Безопасность на транспорте. Правила безопасного поведения в общественном транспорте, в такси и маршрутном такси, на железнодорожном

транспорте, на воздушном и водном транспорте. Предназначение и использование сигнальных цветов, знаков безопасности и сигнальной разметки. Виды ответственности за асоциальное поведение на транспорте. Правила безопасности дорожного движения (в части, касающейся пешеходов, пассажиров и водителей транспортных средств: мопедов, мотоциклов, легкового автомобиля). Предназначение и использование дорожных знаков.

Явные и скрытые опасности современных молодежных хобби. Последствия и ответственность.

Защита населения Российской Федерации от опасных и чрезвычайных ситуаций

Основы законодательства Российской Федерации по организации защиты чрезвычайных ситуаций. Права, населения от опасных и в области организации ответственность гражданина защиты населения OT опасных и чрезвычайных ситуаций. Составляющие государственной системы по защите населения от опасных и чрезвычайных ситуаций. Основные направления деятельности государства по защите населения от опасных и чрезвычайных ситуаций. Потенциальные опасности природного, техногенного и социального характера, характерные для региона проживания, и опасности и чрезвычайные ситуации, возникающие при ведении военных действий или вследствие действий. Правила и рекомендации безопасного поведения в условиях опасных и чрезвычайных ситуаций природного, техногенного и социального характера и в условиях опасностей и чрезвычайных ситуаций, возникающих при ведении военных действий или вследствие этих действий, для обеспечения личной безопасности. Предназначение и использование сигнальных цветов, знаков безопасности, сигнальной разметки и плана эвакуации. Средства индивидуальной, коллективной защиты и приборы индивидуального дозиметрического контроля.

Основы противодействия экстремизму, терроризму и наркотизму в Российской Федерации

Сущность явлений экстремизма, терроризма и наркотизма. система противодействия Общегосударственная экстремизму, терроризму Российской наркотизму: основы законодательства Федерации области противодействия экстремизму, органы терроризму И наркотизму; исполнительной власти, осуществляющие противодействие экстремизму, терроризму и наркотизму в Российской Федерации; права и ответственность в области противодействия экстремизму, терроризму и наркотизму в Российской Федерации.

Способы противодействия вовлечению В экстремистскую и террористическую деятельность, распространению и употреблению наркотических средств. Правила и рекомендации безопасного поведения при террористической опасности и установлении уровней угрозе совершения террористической акции.

Основы здорового образа жизни

Основы законодательства Российской Федерации в области формирования здорового образа жизни. Факторы и привычки, разрушающие здоровье. Репродуктивное здоровье. Индивидуальная модель здорового образа жизни.

Основы медицинских знаний и оказание первой помощи

Основы законодательства Российской Федерации в области оказания первой помощи. Права, обязанности и ответственность гражданина при оказании первой помощи. Состояния, требующие проведения первой помощи, мероприятия и способы оказания первой помощи при неотложных состояниях. Правила и способы переноски (транспортировки) пострадавших.

законодательства Российской Федерации эпидемиологического благополучия населения. Права, обязанности ответственность гражданина сфере санитарно-эпидемиологического благополучия населения. Основные инфекционные заболевания ИΧ профилактика. Правила поведения случае возникновения В Предназначение использование знаков безопасности медицинского санитарного назначения.

Основы обороны государства

Состояние и тенденции России. развития современного мира Национальные интересы РΦ стратегические И национальные приоритеты. Факторы и источники угроз национальной и военной безопасности, оказывающие негативное влияние на национальные интересы России. Содержание и обеспечение национальной безопасности РФ. Военная политика Российской Федерации современных условиях. Основные задачи и приоритеты международного сотрудничества РФ в рамках реализации национальных интересов и обеспечения безопасности. Вооруженные Силы Российской Федерации, другие войска, воинские формирования и органы, их предназначение и задачи. История создания ВС РФ. Структура ВС РФ. Виды и рода войск ВС РФ, их предназначение и задачи. Воинские символы, традиции и ритуалы в ВС РФ. Основные направления развития и строительства BC $P\Phi$. Модернизация вооружения, военной и специальной техники. Техническая оснащенность и ресурсное обеспечение $BCP\Phi$.

Правовые основы военной службы

Воинская обязанность. Подготовка граждан к военной службе. Организация воинского учета. Призыв граждан на военную службу. Поступление на военную службу по контракту. Исполнение обязанностей военной службы. Альтернативная гражданская служба. Срок военной службы для военнослужащих, проходящих военную службу по призыву, по контракту и для проходящих альтернативную гражданскую службу. Воинские должности и звания. Военная форма одежды и знаки различия военнослужащих ВС РФ. Увольнение с военной службы. Запас. Мобилизационный резерв.

Элементы начальной военной подготовки

Строи и управление ими. Строевые приемы и движение без оружия. Выполнение воинского приветствия без оружия на месте и в движении, выход из строя и возвращение в строй. Подход к начальнику и отход от него. Строи отделения.

Назначение, боевые свойства и общее устройство автомата Калашникова. Работа частей и механизмов автомата Калашникова при стрельбе. Неполная разборка и сборка автомата Калашникова для чистки и смазки. Хранение автомата Калашникова. Устройство патрона. Меры безопасности при обращении с автоматом Калашникова и патронами в повседневной жизнедеятельности и при проведении стрельб. Основы и правила стрельбы. Ведение огня из автомата Калашникова. Ручные осколочные гранаты. Меры безопасности при обращении с ручными осколочными гранатами.

Современный общевойсковой бой. Инженерное оборудование позиции солдата. Способы передвижения в бою при действиях в пешем порядке. Элементы военной топографии. Назначение, устройство, комплектность, подбор и правила использования средств индивидуальной защиты (СИЗ) (противогаза, респиратора, общевойскового защитного комплекта (ОЗК) и легкого защитного костюма (Л-1). Действия по сигналам оповещения. Состав и применение аптечки индивидуальной. Оказание первой помощи в бою. Способы выноса раненого с поля боя.

Военно-профессиональная деятельность

Цели и задачи военно-профессиональной деятельности. Военно-учетные специальности. Профессиональный отбор. Военная служба по призыву как этап профессиональной карьеры. Организация подготовки офицерских кадров для ВС РФ, МВД России, ФСБ России, МЧС России. Основные виды высших военно-учебных заведений ВС РФ и учреждения высшего образования МВД России, ФСБ России, МЧС России. Подготовка офицеров на военных кафедрах образовательных организаций высшего образования. Порядок подготовки и поступления в высшие военно-учебные заведения ВС РФ и учреждения высшего образования МВД России, ФСБ России, МЧС России.

Основы безопасности жизнедеятельности (базовый уровень).

По учебному плану Школы предмет «ОБЖ» на уровне среднего общего образования изучается в объёме 34 часов.

Распределение часов, предназначенных на ОБЖ в 10 классе, осуществляется в соответствии с федеральным государственным образовательным стандартом:

10 класс: 34 часа (1 час в неделю).

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ

Предметные результаты:

- 1. В познавательной сфере:
- знания об опасных и чрезвычайных ситуациях; о влиянии их последствий на безопасность личности, общества и государства; о государственной системе обеспечения защиты населения от чрезвычайных ситуаций; об организации подготовки населения к действиям в условиях опасных и чрезвычайных ситуаций; о здоровом образе жизни; об оказании первой медицинской помощи при неотложных состояниях; о правах и обязанностях граждан в области безопасности жизнедеятельности.
 - 2. В ценностно-ориентационной сфере:

- умения предвидеть возникновение опасных ситуаций по характерным признакам их появления, а также на основе анализа специальной информации, получаемой из различных источников;
- умения применять полученные теоретические знания на практике принимать обоснованные решения и вырабатывать план действий в конкретной опасной ситуации с учетом реально складывающейся обстановки и индивидуальных возможностей;
- умения анализировать явления и события природного, техногенного и социального характера, выявлять причины их возникновения и возможные последствия, проектировать модели личного безопасного поведения.
 - 3. В коммуникативной сфере:
- • умения информировать о результатах своих наблюдений, участвовать в дискуссии, отстаивать свою точку зрения, на ходить компромиссное решение в различных ситуациях.
 - 4. В эстетической сфере:
- • умение оценивать с эстетической (художественной) точки зрения красоту окружающего мира; умение сохранять его.
 - 5. В трудовой сфере:
- • знания устройства и принципов действия бытовых приборов и других технических средств, используемых в повседневной жизни: локализация возможных опасных ситуаций, связанных с нарушением работы технических средств и правил их эксплуатации;
 - умения оказывать первую медицинскую помощь.
 - 6. В сфере физической культуры:
 - формирование установки на здоровый образ жизни;
- развитие необходимых физических качеств: выносливости, силы, ловкости, гибкости, скоростных качеств, достаточных для того, чтобы выдерживать необходимые
 умственные
 и физические нагрузки; умение оказывать первую медицинскую помощь при занятиях физической культурой и спортом.

Выпускник научится:

- предвидеть возникновение наиболее часто встречающихся опасных ситуаций по их характерным признакам;
- принимать решения и грамотно действовать, обеспечивая личную безопасность при возникновении чрезвычайных ситуаций;
- действовать при угрозе возникновения террористического акта, соблюдая правила личной безопасности;
 - пользоваться средствами индивидуальной и коллективной зашиты;
 - оказывать первую медицинскую помощь при неотложных состояниях.

Выпускник получит возможность научиться:

– обеспечивать личную безопасность в различных опасных и чрезвычайных ситуациях природного, техногенного и социального характера;

- подготовится и участвовать в различных видах активного отдыха в природных условиях;
 - оказывать первую медицинскую помощь пострадавшим;

Личностные результаты освоения основной образовательной программы:

- развитие личностных, в том числе духовных и физических, качеств, обеспечивающих защищенность жизненно важных интересов личности от внешних и внутренних угроз;
- формирование потребности соблюдать нормы здорового образа жизни, осознанно выполнять правила безопасности жизнедеятельности;
- воспитание ответственного отношения к сохранению окружающей природном среды, личному здоровью как к индивидуальной и общественной ценности.

Метапредметные результаты:

- овладение умениями формулировать личные понятия о безопасности; анализировать причины возникновения опасных и чрезвычайных ситуаций; обобщать и сравнивать последствия опасных и чрезвычайных ситуаций; выявлять причинно-следственные связи опасных ситуаций и их влияние на безопасность жизнедеятельности человека;
- овладение обучающимися навыками самостоятельно определять цели и задачи по безопасному поведению в повседневной жизни и в различных опасных и чрезвычайных ситуациях, выбирать средства реализации поставленных целей, оценивать результаты своей деятельности в обеспечении личной безопасности;
- формирование умения воспринимать и перерабатывать информацию, генерировать идеи, моделировать индивидуальные подходы к обеспечению личной безопасности в повседневной жизни и в чрезвычайных ситуациях;
- приобретение опыта самостоятельного поиска, анализа и отбора информации в области безопасности жизнедеятельности с использованием различных источников и новых информационных технологий;
- развитие умения выражать свои мысли и способности слушать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение;
- освоение приемов действий в опасных и чрезвычайных ситуациях природного, техногенного и социального характера;
- формирование умений взаимодействовать с окружающими, выполнять различные социальные роли во время и при ликвидации последствий чрезвычайных ситуаций.

У учащихся будут сформированы универсальные учебные действия:

– регулятивные:

Умение самостоятельно определять цели обучения, ставить и формулировать новые задачи в учебе и познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности. Обучающийся сможет:

анализировать существующие и планировать будущие образовательные результаты;

• идентифицировать собственные проблемы и определять главную проблему;

- выдвигать версии решения проблемы, формулировать гипотезы, предвосхищать конечный результат;
- ставить цель деятельности на основе определенной проблемы и существующих возможностей;
- формулировать учебные задачи как шаги достижения поставленной цели деятельности;

– познавательные:

Умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное, по аналогии) и делать выводы. Обучающийся сможет:

- •выделять общий признак двух или нескольких предметов или явлений и объяснять их сходство;
- •объединять предметы и явления в группы по определенным признакам, сравнивать, классифицировать и обобщать факты и явления;
- определять обстоятельства, которые предшествовали возникновению связи между явлениями, из этих обстоятельств выделять определяющие, способные быть причиной данного явления, выявлять причины и следствия явлений;
- •излагать полученную информацию, интерпретируя ее в контексте решаемой задачи;
- самостоятельно указывать на информацию, нуждающуюся в проверке предлагать и применять способ проверки достоверности информации;
- •объяснять явления, процессы, связи и отношения, выявляемые в ходе познавательной и исследовательской деятельности (приводить объяснение с изменением формы представления; объяснять, детализируя или обобщая; объяснять с заданной точки зрения);
- •выявлять и называть причины события, явления, в том числе возможные /наиболее вероятные причины, возможные последствия заданной причины, самостоятельно осуществляя причинно-следственный анализ;
- •делать вывод на основе критического анализа разных точек зрения, подтверждать вывод собственной аргументацией или самостоятельно полученными данными.

- коммуникативные:

Умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов; формулировать, аргументировать и отстаивать свое мнение. Обучающийся сможет:

- определять возможные роли в совместной деятельности;
- •играть определенную роль в совместной деятельности;
- •принимать позицию собеседника, понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;

- •определять свои действия и действия партнера, которые способствовали или препятствовали продуктивной коммуникации;
- •строить позитивные отношения в процессе учебной и познавательной деятельности;
- •корректно и аргументированно отстаивать свою точку зрения, в дискуссии уметь выдвигать контраргументы, перефразировать свою мысль (владение механизмом эквивалентных замен);
- •критически относиться к собственному мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;
 - предлагать альтернативное решение в конфликтной ситуации;
 - выделять общую точку зрения в дискуссии;
- •договариваться о правилах и вопросах для обсуждения в соответствии с поставленной перед группой задачей;
- организовывать учебное взаимодействие в группе (определять общие цели, распределять роли, договариваться друг с другом и т. д.);
- •устранять в рамках диалога разрывы в коммуникации, обусловленные непониманием/неприятием со стороны собеседника задачи, формы или содержания диалога.

Содержание рабочей программы

Структурно программа состоит из трех разделов:

Раздел I «Безопасность и защита человека в опасных и чрезвычайных ситуациях» предназначен для систематизации и углубления знаний обучаемых в вопросах обеспечения личной безопасности человека и организации в Российской Федерации защиты населения от опасных и чрезвычайных ситуаций мирного и военного времени, полученных при изучении основ безопасности жизнедеятельности в 5—9 классах.

Раздел II «Основы медицинских знаний и здорового образа жизни» предназначен для формирования у обучаемых знаний о здоровом образе жизни, основных инфекционных и неинфекционных заболеваниях, средствах их профилактики и правилах оказания первой медицинской помощи.

Раздел III «Основы военной службы» предусматривает изучение основных положений, раскрывающих содержание обязательной подготовки молодежи к военной службе. Раздел состоит из тем, в которых последовательно раскрывается содержание обязательной подготовки граждан к военной службе. В процессе изучения тематики раздела учащиеся получат начальные знания в области обороны, ознакомятся с основными положениями Военной доктрины Российской Федерации; получат сведения о Вооруженных Силах Российской Федерации, их структуре и предназначении для обеспечения национальной безопасности страны; уяснят роль и значение военно-патриотического воспитания молодежи в деле подготовки граждан России к выполнению конституционного долга по защите Отечества.

Тематическое планирование

№	Наименование модулей, разделов, тем	Кол-во
модуля		часов

M-I	Основы безопасности личности и государства	11
M-II	Основы медицинских знаний и здорового образа жизни	3
M- III	III Обеспечение военной безопасности государства	20
	Всего часов	34

2.2.16. Рабочие программы элективных курсов.

ИНДИВИДУАЛЬНЫЙ ПРОЕКТ

Элективный курс «Индивидуальный проект» направлен на определение особой формы организации образовательной деятельности обучающихся (учебное исследование или учебный проект). Индивидуальный проект выполняется обучающимся самостоятельно под руководством учителя в течение учебного времени, отведенного учебным планом, и должен быть представлен в виде завершенного учебного исследования или разработанного проекта.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ

Личностные результаты:

- уважение к своему народу, гордости за свой край, свою Родину, уважение государственных символов (герб, флаг, гимн);
- сформированность мировоззрения, соответствующего современному уровню развития науки и общественной практики, основанного на диалоге культур, а также различных форм общественного сознания, осознание своего места в поликультурном мире;
- сформированность основ саморазвития и самовоспитания в соответствии с общечеловеческими ценностями и идеалами гражданского общества; готовность и способность к самостоятельной, творческой и ответственной деятельности;
- толерантное сознание и поведение в поликультурном мире, готовность и способность вести диалог с другими людьми, достигать в нём взаимопонимания, находить общие цели и сотрудничать для их достижения;
- навыки сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности;
- готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- эстетическое отношение к миру, включая эстетику быта, научного и технического творчества, спорта, общественных отношений;
- принятие и реализацию ценностей здорового и безопасного образа жизни, потребности в физическом самосовершенствовании, занятиях спортивно-оздоровительной деятельностью, неприятие вредных привычек: курения, употребления алкоголя, наркотиков;
- бережное, ответственное и компетентное отношение к физическому и психологическому здоровью, как собственному, так и других людей, умение оказывать первую помощь;

- осознанный выбор будущей профессии и возможностей реализации собственных жизненных планов; отношение к профессиональной деятельности как возможности участия в решении личных, общественных проблем;
- сформированность экологического мышления, понимания влияния социальноэкономических процессов на состояние природной и социальной среды; приобретение опыта эколого-направленной деятельности.

Метапредметные результаты:

- умение самостоятельно определять цели деятельности и составлять планы деятельности; самостоятельно осуществлять, контролировать и корректировать деятельность; использовать все возможные ресурсы для достижения поставленных целей и реализации планов деятельности; выбирать успешные стратегии в различных ситуациях;
- умение продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности, эффективно разрешать конфликты;
- владение навыками познавательной, учебно-исследовательской и проектной деятельности, навыками разрешения проблем; способность и готовность к самостоятельному поиску методов решения практических задач, применению различных методов познания;
- готовность и способность к самостоятельной информационно-познавательной деятельности, включая умение ориентироваться в различных источниках информации, критически оценивать и интерпретировать информацию, получаемую из различных источников;
- умение средства информационных использовать и коммуникационных когнитивных, технологий (далее -ИКТ) решении коммуникативных соблюдением организационных задач c требований эргономики, безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности;
 - умение определять назначение и функции различных социальных институтов;
- умение самостоятельно оценивать и принимать решения, определяющие стратегию поведения, с учётом гражданских и нравственных ценностей;
- владение языковыми средствами -умение ясно, логично и точно излагать свою точку зрения, использовать адекватные языковые средства;
- владение навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований, границ своего знания и незнания, новых познавательных задач и средств их достижения.

Предметные результаты:

Десятиклассник научится:

- базовым навыкам коммуникативной, учебно-исследовательской деятельности, критического мышления;
- базовым навыкам инновационной, аналитической, творческой, интеллектуальной деятельности;
- базовым навыкам проектной деятельности, а также самостоятельного применения приобретённых знаний и способов действий при решении различных задач, используя знания нескольких учебных предметов и/или предметных областей;